BackgroundPrevious studies have indicated that bile acid is associated with progression of liver cirrhosis. However, the particular role of specific bile acid in the development of liver cirrhosis is not definite. The present study aims to identify the specific bile acid and explore its possible mechanisms in promoting liver cirrhosis.MethodsThirty two cirrhotic patients and 27 healthy volunteers were enrolled. Age, gender, Child-Pugh classification and serum of patients and volunteers were collected. Liquid chromatography tandem mass spectrometry (LC-MS) was utilized to determine concentrations of 12 bile acids in serum. Principal component analysis, fold change analysis and heatmap analysis were used to identify the most changed bile acid. And pathway analysis was used to identify the most affected pathway in bile acid metabolism. Spearman rank correlation analysis was employed to assess correlation between concentrations of bile acids and Child-Pugh classification. Hepatic stellate cells (LX-2) were cultured in DMEM. LX-2 cells were also co-cultured with HepG2 cells in the transwell chambers. LX-2 cells were treated with Na+/taurocholate in different concentrations. Western blot was used to evaluate the expression of alpha smooth muscle actin (α-SMA), type I collagen, and Toll-like receptor 4 (TLR4) in LX-2 cells.ResultsConcentrations of 12 bile acids in serum of patients and healthy volunteers were determined with LC-MS successively. Principal component analysis, fold change analysis and heatmap analysis identified taurocholic acid (TCA) to be the most changed bile acid. Pathway analysis showed that TCA biosynthesis increased significantly. Spearman rank correlation analysis showed that concentration of TCA in serum of cirrhotic patients was positively associated with Child-Pugh classification. TCA increased the expression of α-SMA, type I collagen, and TLR4 in LX-2 cells. Moreover, the above effect was strengthened when LX-2 cells were co-cultured with HepG2 cells.ConclusionsIncreased TCA concentration in serum of liver cirrhotic patients is mainly due to increased bile acid biosynthesis. TCA is an active promoter of the progression of liver cirrhosis. TCA promoting liver cirrhosis is likely through activating hepatic stellate cells via upregulating TLR4 expression. TCA is a potential therapeutic target for the prevention and treatment of liver cirrhosis.
Heme oxygenase-1 (HO-1) is reported to protect against liver injury, but little is known about its effect on the intestinal barrier in cholestatic liver injury. In this study, we investigated the effects of HO-1 and its enzymatic by-product on intestinal barrier dysfunction in bile duct ligation (BDL) rats and explored the possible mechanism. The HO-1 inducer cobalt protoporphyrin (CoPP) and carbon monoxide-releasing molecule-2 (CORM-2) were used; the expression levels of tight junction (TJ) proteins, intestinal inflammation and NF-κB p65 were measured. For an in vitro experiment, stable Caco-2 cell lines were constructed, one overexpressed the HO-1 gene and another with that gene knocked down, and the specific NF-κB inhibitor JSH-23 was used. CoPP and CORM-2 treatment alleviated liver and intestinal mucosa injury in BDL rats; improved ZO-1, claudin-1 and PCNA expression; and reduced cell apoptosis and intestinal interleukin-6 (IL-6) expression. In vitro studies confirmed that HO-1, ZO-1 and occludin were overexpressed in HO-1-transfected Caco-2 cells, while decreased in the short hairpin HO (sh-HO-1) group. JSH-23 significantly increased occludin expression in both the HO-1 overexpression and sh-HO-1 groups, compared with their respective controls. HO-1 overexpression also inhibited the nuclear translocation of NF-κB p65 after lipopolysaccharide (LPS) treatment. Additionally, phospho-p65 expression in sh-HO-1 cells was significantly increased compared with that of the HO-1 overexpression group. In conclusion, HO-1 and CORM-2 improved intestinal epithelial barrier function in BDL-induced cholestatic liver injury mainly by restoring TJ, reducing cell apoptosis and intestinal inflammation. HO-1 exerts a protective effect, which is partially correlated with the regulation of NF-κB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.