Objectives : The purpose of this study was to develop an adsorbent to which Prussian blue (PB) is stably immobilized to remove radioactive cesium (Cs).Methods : Prussian blue-Alginate (PA) bead and Prussian blue-Alginate with Layer-by-layer synthesis (PAL) bead were synthesized by immobilizing PB respectively.Results and Discussion : As a results of XRD and FT-IR analysis, PB was successfuuly immobilized in alginate bead and PA, PAL bead. SEM (EDS) and TG analysis data were confirmed that the PB content of the PAL bead to which the LBL synthesis method was applied was improved by 6.31%. It was confirmed that the Cs adsorption capacity was improved through the LBL assembly process. The maximum adsorption amount (qm) of PA bead was 25.783 mg/g, and PAL bead was mg/g. In addition, as a result of UV-vis analysis of washing water after synthesis of PA bead and PAL bead, it was confirmed that the PB desorption of the PAL bead was lower indicating that the stability was also improved by LBL synthesis.Conclusions : We developed an adsorbent which prussianblue immobilized on alginate bead for selective removal cesium in aqueous solution. PB was immobilized by LBL synthesis method qm of PAL beads was 28.294 mg/g. It was expected to applied effectively and stably to radioactive cesium contaminated water.
This study aims to utilize Prussian Blue (PB) to develop a high performance adsorbent for removing radioactive cesium from radioactive accidents. Prussian blue (PB) can adsorb selectively to cesium (Cs), which is high in adsorption efficiency, but has a disadvantage that it is difficult to recover after adsorption, so there is a high concern about secondary environmental pollution. Therefore, this study modified the surface of powder activated carbon (PAC) particles by using covalent organic polymer (COP) for stable immobilization of PB, and developed a PB-impregnated adsorbent (COP-PAC-PB). Synthesis of COP-PAC-PB was performed by sequentially reacting with iron (III) chloride and potassium ferrocyanide solution to synthesize PB in COP pore (In-situ). The maximum adsorption of COP-PAC-PB on cesium was 19 mg / g and the removal efficiency for radioactivity cesium (Cs-137, 60 Bq / kg) was 97.3%. In addition, PB was synthesized by the same method as that of COP-PAC-PB, which is a modification product of the unmodified group (PAC, Ox-PAC), and UV-vis analysis was performed to compare PB desorption characteristics after washing Respectively. In the unmodified group (PAC-PB, Ox-PAC-PB), a large amount of PB was desorbed when washed once to 6 times. In the case of COP-PAC-PB, it was not. As a result, the surface of the PAC particles was effectively modified using COP, and the adsorbent with Prussian blue stably immobilized was developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.