-Thermal modification at relatively high temperatures (ranging from 150 to 260 • C) is an effective method to improve the dimensional stability and resistance against fungal attack. This study was performed to investigate the impact of heat treatment on the mechanical properties of wood. An industrially-used two-stage heat treatment method under relative mild conditions (< 200 • C) was used to treat the boards. Heat treatment revealed a clear effect on the mechanical properties of softwood species. The tensile strength parallel to the grain showed a rather large decrease, whereas the compressive strength parallel to the fibre increased after heat treatment. The bending strength, which is a combination of the tensile stress, compressive stress and shear stress, was lower after heat treatment. This decrease was less than the decrease of only the tensile strength. The impact strength showed a rather large decrease after heat treatment. An increase of the modulus of elasticity during the bending test has been noticed after heat treatment. Changes and/or modifications of the main wood components appear to be involved in the effects of heat treatment on the mechanical properties. The possible effect of degradation and modification of hemicelluloses, degradation and/or crystallization of amorphous cellulose, and polycondensation reactions of lignin on the mechanical properties of heat treated wood have been discussed. The effect of natural defects, such as knots, resin pockets, abnormal slope of grain and reaction wood, on the strength properties of wood appeared to be affected by heat treatment. Nevertheless, heat treated timber shows potential for use in constructions, but it is important to carefully consider the stresses that occur in a construction and some practical consequences when heat treated timber is used. thermal modification / mechanical properties / cellulose / hemicelluloses / lignin Résumé -Propriétés mécaniques de bois résineux modifiés par traitement thermique en relation avec la constitution en polymères ligneux structuraux. La modification thermique du bois à des températures relativement élevées (entre 150 et 260 • C) présente une méthode efficace pour améliorer la stabilité dimensionnelle et la résistance aux attaques de champignons. Ce travail porte sur les effets du traitement thermique sur les propriétés mécaniques du bois. Les planches ont été soumises à un traitement thermique à des températures relativement modérées (< 200 • C) selon un procédé industriel en deux phases. Il s'est avéré qu'un tel traitement influe nettement sur les propriétés mécaniques des bois résineux. La résistance à la traction dans la direction parallèle au fil du bois est diminuée de manière assez importante, tandis que, dans la même direction, la résistance à la compression est augmentée. La résistance au fléchissement, qui intègre la résistance aux efforts de traction, de compression et de cisaillement, était plus réduite après le traitement thermique. Cette diminution était moins importante que celle de la...
Heat treatment of wood has been found an effective method to improve dimensional stability and durability against biodegradation. A two-stage heat treatment of wood at relatively mild conditions (< 200 degrees C) was investigated by using different chemical analysing methods, such as a wood chemical component analysis, CHNO-elemental analysis, UV spectroscopy, and analysis of the acetyl and free hydroxyl group content. The results of this study contribute to a better understanding of the typical reaction mechanisms occurring and of the effect of heat treatment on the properties of wood, as described in previous 13C-NMR and FTIR studies of heat treated wood
Heat treatment of wood is an effective method to improve the dimensional stability and durability against biodegradation. Optimisation of a two-stage heat treatment process at relatively mild conditions (<200°C) and its effect on the anatomical structure of hardwoods were investigated by means of a light and scanning electron microscopic analysis. Hardwood species such as beech and poplar, were predominantly sensitive to collaps of the vessels and some deformation of the libriform fibres directly near the vessels. In treated beech and birch radial cracks were observed near the rays. Optimisation of the heat treatment process conditions including the application of a steam hydro thermolysis stage reduced such damages to a minimum. Broken cell walls perpendicular to the fibre direction resulting in transverse ruptures has been noticed in heat treated hardwood species. This contributes to abrupt fractures of treated wood as observed in bending tests which can lead to considerably different failure behavior after impact of mechanical stress. In some treated hardwood species maceration (small cracks between tracheids) was noticed after heat treatment. Heat treatment did not reveal damage to the ray parenchyma pit membranes, bordered pits and large window pit membranes; and the margo fibrils appeared without damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.