Cerebrovascular accidents (CVA) cause a range of impairments in coordination, such as a spectrum of walking impairments ranging from mild gait imbalance to complete loss of mobility. Patients with CVA need personalized approaches tailored to their degree of walking impairment for effective rehabilitation. This paper aims to evaluate the validity of using various machine learning (ML) and deep learning (DL) classification models (support vector machine, Decision Tree, Perceptron, Light Gradient Boosting Machine, AutoGluon, SuperTML, and TabNet) for automated classification of walking assistant devices for CVA patients. We reviewed a total of 383 CVA patients’ (1623 observations) prescription data for eight different walking assistant devices from five hospitals. Among the classification models, the advanced tree-based classification models (LightGBM and tree models in AutoGluon) achieved classification results of over 90% accuracy, recall, precision, and F1-score. In particular, AutoGluon not only presented the highest predictive performance (almost 92% in accuracy, recall, precision, and F1-score, and 86.8% in balanced accuracy) but also demonstrated that the classification performances of the tree-based models were higher than that of the other models on its leaderboard. Therefore, we believe that tree-based classification models have potential as practical diagnosis tools for medical rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.