This report provides an update of the epidemiology of African swine fever (ASF) in the European Union during the period November 2018 to October 2019. In this period, ASF has been confirmed in Slovakia, whereas Czechia became officially ASF-free in March 2019, bringing the number of affected countries in the EU to nine. The report provides a narrative update of the situation in the different countries and an analysis of the temporal and spatial patterns of the disease. There has been no increase in the proportion of seropositive hunted wild boar in the affected areas. In hunted animals, the proportions of wild boar testing polymerase chain reaction-positive and enzyme-linked immunosorbent assay-positive has remained low (< 0.05). In addition to the obvious seasonal peak in summer in domestic pigs, seasonality of ASF in wild boar was statistically confirmed. A network analysis demonstrated that the median velocity of the natural propagation of the disease in wild boar populations was between 2.9 and 11.7 km/year. Human-mediated spread, both in pigs and wild boar, however, remains important. Several wild boar-and domestic pig-related risk factors for ASF occurrence in non-commercial farms in Romania were identified with a case-control study. This report also updates an extensive literature review on control measures to stop the spread of the disease in wild boar and on measures to separate wild boar populations. Several new studies have been identified in this reporting period, but these did not alter the conclusions of the previous reporting period. Field experience with the use of fences as part of the control strategy deployed in the Belgian focal outbreak of ASF in wild boar is described. So far, the measures have proven effective to keep ASF virus inside the affected area. This strategy included a combination of different measures, namely zoning, carcass removal, a complete feeding ban, specific hunting regulations and depopulation actions depending on the zone, a partial ban of people and logging, and setting up a network of concentric fences.
This report provides a descriptive analysis of the African swine fever (ASF) Genotype II epidemic in the affected Member States in the EU and two neighbouring countries for the period from 1 September 2020 to 31 August 2021. ASF continued to spread in wild boar in the EU, it entered Germany in September 2020, while Belgium became free from ASF in October 2020. No ASF outbreaks in domestic pigs nor cases in wild boar have been reported in Greece since February 2020. In the Baltic States, overall, there has been a declining trend in proportions of polymerase chain reaction (PCR)-positive samples from wild boar carcasses in the last few years. In the other countries, the proportions of PCR-positive wild boar carcasses remained high, indicating continuing spread of the disease. A systematic literature review revealed that the risk factors most frequently significantly associated with ASF in domestic pigs were pig density, low levels of biosecurity and socio-economic factors. For wild boar, most significant risk factors were related to habitat, socio-economic factors and wild boar management. The effectiveness of different control options in the so-named white zones, areas where wild boar densities have been drastically reduced to avoid further spread of ASF after a new introduction, was assessed with a stochastic model. Important findings were that establishing a white zone is much more challenging when the area of ASF incursion is adjacent to an area where limited control measures are in place. Very stringent wild boar population reduction measures in the white zone are key to success. The white zone needs to be far enough away from the affected core area so that the population can be reduced in time before the disease arrives and the timing of this will depend on the wild boar density and the required population reduction target in the white zone. Finally, establishing a proactive white zone along the demarcation line of an affected area requires higher culling efforts, but has a higher chance of success to stop the spread of the disease than establishing reactive white zones after the disease has already entered in the area.
The European Commission requested EFSA to provide study designs for the investigation of four research domains according to major gaps in knowledge identified by EFSA in a report published in 2019: i) the patterns of seasonality of ASF in wild boar and domestic pigs in the EU ; ii) the ASF epidemiology in wild boar; iii) ASF virus ( ASFV ) survival in the environment and iv) ASF transmission by vectors. In this Scientific Opinion, the first research domain on ASF seasonality is addressed. Therefore, five research objectives were proposed by the working group and broader ASF expert networks, such as ASF stop, ENETWILD , VectorNet, AHAW network and the AHAW Panel Experts. Of the five research objectives, only two were prioritised and elaborated into a general protocol/study design research proposal, namely: 1) to monitor the herd incidence of ASF outbreaks in EU Member States ( MS ) and 2) to investigate potential (seasonal) risk factors for ASF incursion in domestic pig herds of different herd types and/or size. To monitor the incidence in different pig herd types, it is advised to collect, besides ASF surveillance data, pig population data describing at least the following parameters per farm from the first moment of incursion in an affected MS : the numbers of pigs (e.g. number of breeding pigs sows and boars, weaners and fatteners) and the location and the type of farm (including details on the level of biosecurity implemented on the farm and the outdoor/indoor production). We suggest collecting data from all ASF ‐affected MS through the SIGMA data model, which was developed for this purpose. To investigate potential risk factors for ASF incursion in domestic pig herds, we suggest a matched case–control design. Such a study design can be run either retrospectively or prospectively. The collected data on the pig herds and the ASF surveillance data in the SIGMA data model can be used to identify case and control farms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.