Few-shot object detection is a recently emerging branch in the field of computer vision. Recent research studies have proposed several effective methods for object detection with few samples. However, their performances are limited when applied to remote sensing images. In this article, we specifically analyze the characteristics of remote sensing images and propose a few-shot fine-tuning network with a shared attention module (SAM) to adapt to detecting remote sensing objects, which have large size variations. In our SAM, multi-attention maps are computed in the base training stage and shared with the feature extractor in the few-shot fine-tuning stage as prior knowledge to help better locate novel class objects with few samples. Moreover, we design a new few-shot fine-tuning stage with a balanced fine-tuning strategy (BFS), which helps in mitigating the severe imbalance between the number of novel class samples and base class samples caused by the few-shot settings to improve the classification accuracy. We have conducted experiments on two remote sensing datasets (NWPU VHR-10 and DIOR), and the excellent results demonstrate that our method makes full use of the advantages of few-shot learning and the characteristics of remote sensing images to enhance the few-shot detection performance.
As the application scenarios of remote sensing imagery (RSI) become richer, the task of ship detection from an overhead perspective is of great significance. Compared with traditional methods, the use of deep learning ideas has more prospects. However, the Convolutional Neural Network (CNN) has poor resistance to sample differences in detection tasks, and the huge differences in the image environment, background, and quality of RSIs affect the performance for target detection tasks; on the other hand, upsampling or pooling operations result in the loss of detailed information in the features, and the CNN with outstanding results are often accompanied by a high computation and a large amount of memory storage. Considering the characteristics of ship targets in RSIs, this study proposes a detection framework combining an image enhancement module with a dense feature reuse module: (1) drawing on the ideas of the generative adversarial network (GAN), we designed an image enhancement module driven by object characteristics, which improves the quality of the ship target in the images while augmenting the training set; (2) the intensive feature extraction module was designed to integrate low-level location information and high-level semantic information of different resolutions while minimizing the computation, which can improve the efficiency of feature reuse in the network; (3) we introduced the receptive field expansion module to obtain a wider range of deep semantic information and enhance the ability to extract features of targets were at different sizes. Experiments were carried out on two types of ship datasets, optical RSI and Synthetic Aperture Radar (SAR) images. The proposed framework was implemented on classic detection networks such as You Only Look Once (YOLO) and Mask-RCNN. The experimental results verify the effectiveness of the proposed method.
With the rapid development of artificial intelligence, how to take advantage of deep learning and big data to classify polarimetric synthetic aperture radar (PolSAR) imagery is a hot topic in the field of remote sensing. As a key step for PolSAR image classification, feature extraction technology based on target decomposition is relatively mature, and how to extract discriminative spatial features and integrate these features with polarized information to maximize the classification accuracy is the core issue. In this context, this paper proposes a PolSAR image classification algorithm based on fully convolutional networks (FCNs) and a manifold graph embedding model. First, to describe different types of land objects more comprehensively, various polarized features of PolSAR images are extracted through seven kinds of traditional decomposition methods. Afterwards, drawing on transfer learning, the decomposed features are fed into multiple parallel and pre-trained FCN-8s models to learn deep multi-scale spatial features. Feature maps from the last layer of each FCN model are concatenated to obtain spatial polarization features with high dimensions. Then, a manifold graph embedding model is adopted to seek an effective and compact representation for spatially polarized features in a manifold subspace, simultaneously removing redundant information. Finally, a support vector machine (SVM) is selected as the classifier for pixel-level classification in a manifold subspace. Extensive experiments on three PolSAR datasets demonstrate that the proposed algorithm achieves a superior classification performance.
In recent years, methods based on neural network have achieved excellent performance for image segmentation. However, segmentation around the edge area is still unsatisfactory when dealing with complex boundaries. This paper proposes an edge prior semantic segmentation architecture based on Bayesian framework. The entire framework is composed of three network structures, a likelihood network and an edge prior network at the front, followed by a constraint network. The likelihood network produces a rough segmentation result, which is later optimized by edge prior information, including the edge map and the edge distance. For the constraint network, the modified domain transform method is proposed, in which the diffusion direction is revised through the newly defined distance map and some added constraint conditions. Experiments about the proposed approach and several contrastive methods show that our proposed method had good performance and outperformed FCN in terms of average accuracy for 0.0209 on ESAR data set.
Recently, deep-learning methods have yielded rapid progress for object detection in synthetic aperture radar (SAR) imagery. It is still a great challenge to detect ships in SAR imagery due to ships’ small size and confusable detail feature. This article proposes a novel anchor-free detection method composed of two modules to deal with these problems. First, for the lack of detailed information on small ships, we suggest an adaptive feature-encoding module (AFE), which gradually fuses deep semantic features into shallow layers and realizes the adaptive learning of the spatial fusion weights. Thus, it can effectively enhance the external semantics and improve the representation ability of small targets. Next, for the foreground–background imbalance, the Gaussian-guided detection head (GDH) is introduced according to the idea of soft sampling and exploits Gaussian prior to assigning different weights to the detected bounding boxes at different locations in the training optimization. Moreover, the proposed Gauss-ness can down-weight the predicted scores of bounding boxes far from the object center. Finally, the effect of the detector composed of the two modules is verified on the two SAR ship datasets. The results demonstrate that our method can effectively improve the detection performance of small ships in datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.