Dynamic games arise when multiple agents with differing objectives choose control a dynamic system. They model a wide variety of applications in economics, defense, energy systems and etc. However, compared to single-agent control problems, the computational methods for dynamic games are relatively limited. As in the single-agent case, only specific dynamic games can be solved exactly, and so approximation algorithms are required. In this paper, we show how to extend a recursive Newton's algorithm and the popular differential dynamic programming (DDP) for single-agent optimal control to the case of full-information non-zero sum dynamic games. In the singleagent case, convergence of DDP is proved by comparison with Newton's method, which converges locally at a quadratic rate. We show that the iterates of Newton's method and DDP are sufficiently close for the DDP to inherit the quadratic convergence rate of Newton's method. We also prove both methods result in an open-loop Nash equilibrium and a local feedback O(ε 2 )-Nash equilibrium. Numerical examples are provided.
Dynamic games arise when multiple agents with differing objectives control a dynamic system. They model a wide variety of applications in economics, defense, energy systems and etc. However, compared to single-agent control problems, the computational methods for dynamic games are relatively limited. As in the single-agent case, only specific dynamic games can be solved exactly, so approximation algorithms are required. In this paper, we show how to extend the Newton step algorithm, the Bellman recursion and the popular differential dynamic programming (DDP) for single-agent optimal control to the case of fullinformation nonzero sum dynamic games. We show that the Newton's step can be solved in a computationally efficient manner and inherits its original quadratic convergence rate to open-loop Nash equilibria, and that the approximated Bellman recursion and DDP methods are very similar and can be used to find local feedback O(ε 2 )-Nash equilibria. Numerical examples are provided.
KeywordsNoncooperative dynamic games • Open-loop Nash equilibrium • Feedback Nash equilibrium • Newton's method • Differential dynamic programming B Bolei Di
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.