When there are a large number of antennas in massive MIMO systems, the transmitted wideband signal will be sensitive to the physical propagation delay of electromagnetic waves across the large array aperture, which is called the spatial-wideband effect. In this scenario, transceiver design is different from most of the existing works, which presume that the bandwidth of the transmitted signals is not that wide, ignore the spatial-wideband effect, and only address the frequency selectivity. In this paper, we investigate spatial-and frequencywideband effects, called dual-wideband effects, in massive MIMO systems from array signal processing point of view. Taking mmWave-band communications as an example, we describe the transmission process to address the dual-wideband effects. By exploiting the channel sparsity in the angle domain and the delay domain, we develop the efficient uplink and downlink channel estimation strategies that require much less amount of training overhead and cause no pilot contamination. Thanks to the array signal processing techniques, the proposed channel estimation is suitable for both TDD and FDD massive MIMO systems. Numerical examples demonstrate that the proposed transmission design for massive MIMO systems can effectively deal with the dual-wideband effects.Index Terms-Massive MIMO, mmWave, array signal processing, wideband, spatial-wideband, beam squint, angle reciprocity, delay reciprocity.
With the increasing scale of antenna arrays in wideband millimeter-wave (mmWave) communications, the physical propagation delays of electromagnetic waves traveling across the whole array will become large and comparable to the time-domain sample period, which is known as the spatial-wideband effect. In this case, different subcarriers in an orthogonal frequency division multiplexing (OFDM) system will "see" distinct angles of arrival (AoAs) for the same path. This effect is known as beam squint, resulting from the spatial-wideband effect, and makes the approaches based on the conventional multipleinput multiple-output (MIMO) model, such as channel estimation and precoding, inapplicable. After discussing the relationship between beam squint and the spatial-wideband effect, we propose a channel estimation scheme for frequency-division duplex (FDD) mmWave massive MIMO-OFDM systems with hybrid analog/digital precoding, which takes the beam squint effect into consideration. A super-resolution compressed sensing approach is developed to extract the frequency-insensitive parameters of each uplink channel path, i.e., the AoA and the time delay, and the frequency-sensitive parameter, i.e., the complex channel gain. With the help of the reciprocity of these frequency-insensitive parameters in FDD systems, the downlink channel estimation can be greatly simplified, where only limited pilots are needed to obtain downlink complex gains and reconstruct downlink channels. Furthermore, the uplink and downlink 2 channel covariance matrices can be constructed from these frequency-insensitive channel parameters rather than through a long-term average, which enables the minimum mean-squared error (MMSE) channel estimation to further enhance performance. Numerical results demonstrate the superiority of the proposed scheme over the conventional methods under general system configurations in mmWave communications.
The combination of large bandwidth at terahertz (THz) and the large number of antennas in massive MIMO results in the non-negligible spatial wideband effect in time domain or the corresponding beam squint issue in frequency domain, which will cause severe performance degradation if not properly treated. In particular, for a phased array based hybrid transceiver, there exists a contradiction between the requirement of mitigating the beam squint issue and the hardware implementation of the analog beamformer/combiner, which makes the accurate beamforming an enormous challenge. In this paper, we propose two wideband hybrid beamforming approaches, based on the virtual sub-array and the true-time-delay (TTD) lines, respectively, to eliminate the impact of beam squint. The former one divides the whole array into several virtual sub-arrays to generate a wider beam and provides an evenly distributed array gain across the whole operating frequency band. To further enhance the beamforming performance and thoroughly address the aforementioned contradiction, the latter one introduces the TTD lines and propose a new hardware implementation of analog beamformer/combiner. This TTD-aided hybrid implementation enables the wideband beamforming and achieves the nearoptimal performance close to full-digital transceivers. Analytical and numerical results demonstrate the effectiveness of two proposed wideband beamforming approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.