As an oxygen-transporting protein, free hemoglobin (Hb) often suffers from the disadvantage of undesirable stability and short blood circulation, which severely impairs the potential clinical applications as the blood substitute. In this work, Hb was facilely encapsulated into a kind of metal−organic frameworks (MOFs) (ZIF-8) inspired by the natural biomineralization process. The obtained ZIF-8 encapsulating Hb (ZIF-8@Hb) showed the small hydrodynamic size of 180.8 nm and neutral zeta potential of −2.1 mV by adjusting the ratio of Hb in ZIF-8 frameworks. Intriguingly, Hb encapsulated by ZIF-8 exhibited significantly enhanced stability in alkaline, oxidation, high temperature, or enzymatic environment compared with free Hb because of the excellent protective MOF coatings. More importantly, the negative charge of Hb neutralized the original positive charge of ZIF-8, which led to the better biocompatibility, lower protein adsorption, and macrophage uptake of ZIF-8@Hb than bare ZIF-8 nanoparticles. Furthermore, ZIF-8@Hb displayed extended blood circulation with the elimination half-life of 13.9 h as well as reduced nonspecific distribution in normal organs compared with free Hb or ZIF-8 nanoparticles. With the above advantages, ZIF-8@Hb showed significantly extended survival time of mice in a disease model of hemorrhagic shock compared with free Hb or bare ZIF-8 nanoparticles. Overall, this work offers a high-stable and long-circulating oxygen carrier platform, which may find wide applications as a blood substitute to treat various oxygen-relevant diseases.
AbstractDetailed characterization of the permeability and vascular volume of brain tumor vasculature can provide essential insights into tumor physiology. In this study, we evaluated the consistency of measurements in tumor blood volume and examined the feasibility of using ultrasmall superparamagnetic iron oxide (USPIO) versus gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) as contrast agents for MR perfusion imaging of brain gliomas in C6 Rats. Eighteen rats were intracerebrally implanted with C6 glioma cells, randomly divided into two groups and examined by 3.0T perfusion MR imaging with Gd-DTPA and USPIO. Tumor relative cerebral blood volume (rCBV) and relative maximum signal reduction ratio (rSRRmax) were created based on analysis of MR perfusion images. The mean values for rCBV were 2.09 and 1.57 in the USPIO and the Gd-DTPA groups, respectively, and rSRRmax values were 1.92 and 1.02 in the USPIO and the Gd-DTPA groups, respectively, showing signifi cant differences in both rCBV and rSRRmax between the USPIO and the Gd-DTPA groups (P < 0.05). The results showed that early vascular leakage occurred with gadolinium rather than USPIO in perfusion assessment, revealing that USPIO was useful in perfusion MR imaging for the assessment of tumor vasculature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.