Channel‐rich RuCu snowflake‐like nanosheets (NSs) composed of crystallized Ru and amorphous Cu were used as efficient electrocatalysts for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting in pH‐universal electrolytes. The optimized RuCu NSs/C‐350 °C and RuCu NSs/C‐250 °C show attractive activities of OER and HER with low overpotentials and small Tafel slopes, respectively. When applied to overall water splitting, the optimized RuCu NSs/C can reach 10 mA cm−2 at cell voltages of only 1.49, 1.55, 1.49 and 1.50 V in 1 m KOH, 0.1 m KOH, 0.5 m H2SO4 and 0.05 m H2SO4, respectively, much lower than those of commercial Ir/C∥Pt/C. The optimized electrolyzer exhibits superior durability with small potential change after up to 45 h in 1 m KOH, showing a class of efficient functional electrocatalysts for overall water splitting.
Electroreduction of carbon dioxide (CO2) into multicarbon products provides possibility of large-scale chemicals production and is therefore of significant research and commercial interest. However, the production efficiency for ethanol (EtOH), a significant chemical feedstock, is impractically low because of limited selectivity, especially under high current operation. Here we report a new silver–modified copper–oxide catalyst (dCu2O/Ag2.3%) that exhibits a significant Faradaic efficiency of 40.8% and energy efficiency of 22.3% for boosted EtOH production. Importantly, it achieves CO2–to–ethanol conversion under high current operation with partial current density of 326.4 mA cm−2 at −0.87 V vs reversible hydrogen electrode to rank highly significantly amongst reported Cu–based catalysts. Based on in situ spectra studies we show that significantly boosted production results from tailored introduction of Ag to optimize the coordinated number and oxide state of surface Cu sites, in which the *CO adsorption is steered as both atop and bridge configuration to trigger asymmetric C–C coupling for stablization of EtOH intermediates.
Realizing stable and efficient overall water splitting is highly desirable for sustainable and efficient hydrogen production yet challenging because of the rapid deactivation of electrocatalysts during the acidic oxygen evolution process. Here, we report that the single-site Pt-doped RuO 2 hollow nanospheres (SS Pt-RuO 2 HNSs) with interstitial C can serve as highly active and stable electrocatalysts for overall water splitting in 0.5 M H 2 SO 4 . The performance toward overall water splitting have surpassed most of the reported catalysts. Impressively, the SS Pt-RuO 2 HNSs exhibit promising stability in polymer electrolyte membrane electrolyzer at 100 mA cm −2 during continuous operation for 100 hours. Detailed experiments reveal that the interstitial C can elongate Ru-O and Pt-O bonds, and the presence of SS Pt can readily vary the electronic properties of RuO 2 and improve the OER activity by reducing the energy barriers and enhancing the dissociation energy of * O species.
Electrochemical conversion of nitrogen (N2) into value‐added ammonia (NH3) is highly desirable yet formidably challenging due to the extreme inertness of the N2 molecule, which makes the development of a robust electrocatalyst prerequisite. Herein, a new class of bullet‐like M‐Te (M = Ru, Rh, Ir) glassy porous nanorods (PNRs) is reported as excellent electrocatalysts for N2 reduction reaction (NRR). The optimized IrTe4 PNRs present superior activity with the highest NH3 yield rate (51.1 µg h−1 mg−1cat.) and Faraday efficiency (15.3%), as well as long‐term stability of up to 20 consecutive cycles, making them among the most active NRR electrocatalysts reported to date. Both the N2 temperature‐programmed desorption and valence band X‐ray photoelectron spectroscopy data show that the strong chemical adsorption of N2 is the key for enhancing the NRR and suppressing the hydrogen evolution reaction of IrTe4 PNRs. Density functional theory calculations comprehensively identify that the superior adsorption strength of IrTe4 adsorptions originates from the synergistic collaboration between electron‐rich Ir and the highly electroactive surrounding Te atoms. The optimal adsorption of both N2 and H2O in alkaline media guarantees the superior consecutive NRR process. This work opens a new avenue for designing high‐performance NRR electrocatalysts based on glassy materials.
Electrocatalytic nitrogen reduction reaction (NRR) is a promising process relative to energy‐intensive Haber–Bosch process. While conventional electrocatalysts underperform with sluggish paths, achieving dissociation of N2 brings the key challenge for enhancing NRR. This study proposes an effective surface chalcogenation strategy to improve the NRR performance of pristine metal nanocrystals (NCs). Surprisingly, the NH3 yield and Faraday efficiency (FE) (175.6 ± 23.6 mg h–1 g–1Rh and 13.3 ± 0.4%) of Rh‐Se NCs is significantly enhanced by 16 and 15 times, respectively. Detailed investigations show that the superior activity and high FE are attributed to the effect of surface chalcogenation, which not only can decrease the apparent activation energy, but also inhibit the occurrence of the hydrogen evolution reaction (HER) process. Theoretical calculations reveal that the strong interface strain effect within core@shell system induces a critical redox inversion, resulting in a rather low valence state of Rh and Se surface sites. Such strong correlation indicates an efficient electron‐transfer minimizing NRR barrier. Significantly, the surface chalcogenation strategy is general, which can extend to create other NRR metal electrocatalysts with enhanced performance. This strategy open a new avenue for future NH3 production for breakthrough in the bottleneck of NRR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.