In this paper we consider of natural oscillations cylindrical bodies with external friction. Complex rates changes from friction parameters are shown. Rate equations are solved numerically-by method of Muller.
In this paper we construct conjugate spectral problem and the conditions of biorthogonality for distribution in extended plates of variable thickness of the problem considered. It describes the procedure of solving problems and a numerical result is on wave propagation in an infinitely large plate of variable thickness. Viscous properties of the material are taken into account by means of an integral operator Voltaire. Research is conducted in the framework of the spatial theory of visco elastic. The technique is based on the separation of spatial variables and formulates the boundary eigenvalue problem that can be solved by the method of orthogonal pivotal condensation Godunov. Numerical values obtained the real and imaginary parts of the phase velocity depending on the wave numbers. The numerical result coincides with the known data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.