In work questions of distribution of waves in a viscoelastic wedge with any corner of top is considered. The elastic cylinder with a radial crack is a wedge 180 ϕ < corner. The regional task for system of the differential equations in private derivatives is decided by means of a method of straight lines that allows using a method of orthogonal prorace.
Abstract:The work is devoted to the study of harmonic waves in a hereditarily elastic plate with two viscoelastic coatings, the properties of the material, which are described by the equations of state in integral form. The fractional exponential function of Rabotnov and Koltunov-Rzhanitsyn was chosen as the kernel of the integral operator. Two cases are considered: the case of a stress-strain state symmetric and antisymmetric in the normal coordinate (VAT). In the study of natural oscillations, the properties of those modes that are time-dependent by harmonic law are investigated. For both cases, dispersion equations are derived, which are solved numerically. Asymptotics of the roots of dispersion equations for small and large frequencies are also obtained. The analysis of the obtained solutions made it possible to draw conclusions about the influence of hereditary factors on the behavior of dispersion curves. A comparative analysis of numerical solutions and their asymptotics is carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.