Belief propagation (BP) is widely used to solve the cooperative localization problem due to its excellent performance and natural distributed structure of implementation. For a mobile agent network, its factor graph inevitably encounters loops. In this case, the BP algorithm becomes iterative and can only provide an approximate marginal probability density function of the estimate with finite iterations. We propose an augmented-state BP algorithm for mobile agent networks to alleviate the effect of loops. By performing state augmentation, the messages in the factor graph will actually be allowed to be backward propagated, which reduces the number of loops in the factor graph, increases the available information of agents, and thus, benefits the localization. Experimental results demonstrate the better performance of the proposed algorithm over the original BP method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.