Lungs from non-heart-beating donors (NHBDs) would enhance the donor pool. Ex vivo perfusion and ventilation of NHBD lungs allows functional assessment and treatment. Ventilation of rat NHBD lungs with nitric oxide (NO) during ischemia, ex vivo perfusion and after transplant reduced ischemia-reperfusion injury (IRI) and improved lung function posttransplant. One hour after death, Sprague-Dawley rats were ventilated for another hour with either 60% O2 or 60% O2/40 ppm NO. Lungs were then flushed with 20-mL cold Perfadex, stored cold for 1 h, perfused in an ex vivo circuit with Steen solution and warmed to 37• C, ventilated 15 min, perfusion-cooled to 20 • C, then flushed with cold Perfadex and stored cold. The left lung was transplanted and ventilated separately. Recipients were sacrificed after 1 h. NO-ventilation was associated with significantly reduced wet:dry weight ratio in the ex vivo circuit, better oxygenation, reduced pulmonary vascular resistance, increased lung tissue levels of cGMP, maintained endothelial NOS eNOS, and reduced increases in tumor necrosis factor alpha (TNF-a ) and inducible nitric oxide synthase (iNOS). NO-ventilation had no effect on MAP kinases or NFj B activation. NO administration to NHBDs before and after lung retrieval may improve function of lungs from NHBDs.
Objective: We sought to determine whether ventilation of lungs after death in non-heart-beating donors with carbon monoxide during warm ischemia and ex vivo lung perfusion and after transplant would reduce ischemia-reperfusion injury and improve lung function. Methods: One hour after death, Sprague-Dawley rats were ventilated for another hour with 60% oxygen (control group) or 500 ppm carbon monoxide in 60% oxygen (CO-vent group; n¼6/group). Then, lungs were flushed with 20 mL cold Perfadex, stored cold for 1 hour, then warmed to 37 C in an ex vivo lung perfusion circuit perfused with Steen solution. At 37 C, lungs were ventilated for 15 minutes with alveolar gas with or without 500 ppm carbon monoxide, then perfusion-cooled to 20 C, flushed with cold Perfadex and stored cold for 2 hours. The left lung was transplanted using a modified cuff technique. Recipients were ventilated with 60% oxygen with or without carbon monoxide. One hour after transplant, we measured blood gases from the left pulmonary vein and aorta, and wet-to-dry ratio of both lungs. The RNA and protein extracted from graft lungs underwent real-time polymerase chain reaction and Western blotting, and measurement of cyclic guanosine monophosphate by enzyme-linked immunosorbent assay. Results: Carbon monoxide ventilation begun 1 hour after death reduced wet/dry ratio after ex vivo lung perfusion. After transplantation, the carbon monoxide-ventilation group had better oxygenation; higher levels of tissue cyclic guanosine monophosphate, heme oxidase-1 expression, and p38 phosphorylation; reduced c-Jun N-terminal kinase phosphorylation; and reduced expression of interleukin-6 and interleukin-1b messenger RNA. Conclusions: Administration of carbon monoxide to the deceased donor and non-heart-beating donor lungs reduces ischemia-reperfusion injury in rat lungs transplanted from non-heart-beating donors. Therapy to the deceased donor via the airway may improve post-transplant lung function.
It is suggested that the ratio of the area of the mediastinal computed tomographic image to that of the lung computed tomographic image can be a prognostic factor in patients with small peripheral lung adenocarcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.