Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular pathogen. Previously, we reported that the 56-kDa type-specific antigen (TSA56), a major outer membrane protein of O. tsutsugamushi, binds to fibronectin and facilitates bacterial entry into the host cell, potentially via an interaction with integrins. Here, we demonstrated that O. tsutsugamushi colocalizes with integrin ␣51 and activates integrin signaling effectors, including focal adhesion kinase, Src kinase, and RhoA GTPase, and also recruits signaling adaptors, such as talin and paxillin, to the site of infection. Inhibition of protein tyrosine kinases or RhoA reduced intracellular invasion. We also observed substantial actin reorganization and membrane protrusions at the sites of infection of nonphagocytic host cells. Finally, we identified a region in the extracellular domain of TSA56 that binds to fibronectin. A peptide containing this region was able to significantly reduce bacterial invasion. Taken together, these results clearly indicate that O. tsutsugamushi exploits integrin-mediated signaling and the actin cytoskeleton for invasion of eukaryotic host cells.Orientia tsutsugamushi, an obligate intracellular organism, is the causative agent of scrub typhus (26), a disease characterized by fever, rash, eschar, pneumonitis, meningitis, and disseminated intravascular coagulation. Scrub typhus can lead to multiorgan failure if it is left untreated, and the mortality rate ranges from 1% to 40% depending on the strain of O. tsutsugamushi (29). Scrub typhus is confined geographically to southeastern Asia and is found in many countries in this region,
Little is known about the cellular characteristics of CD8(+) T cells in rheumatoid arthritis (RA). We addressed this by investigating whether the frequency of the CD8(+) T cell subsets and their phenotypic characteristics are altered in the peripheral blood and synovial fluid (SF) from patients with RA. In this study, CD8(+) T cells, mainly CD45RA(-) effector memory (EM) CD8(+) T cells, were increased significantly in the SF, but not in the peripheral blood from RA patients, compared with healthy controls. The synovial EM CD8(+) T cells were activated phenotypes with high levels of CD80, CD86, and PD-1, and had a proliferating signature in vivo upon Ki-67 staining, whereas the Fas-positive cells were prone to apoptosis. In addition, EM CD8(+) T cells in the SF were less cytotoxic, as they expressed less perforin and granzyme B. In particular, the proportions of synovial fluid mononuclear cells that were CCR4(+)CD8(+) T cells and IL-4-producing CD8(+) T cells (i.e., Tc2 cells) were significantly higher than those in peripheral blood mononuclear cells of patients with RA and healthy controls. In addition, the number of IL-10-producing CD8(+) suppressor T (Ts) cells increased significantly in the SF of RA patients. Especially, CD8(+) T cells were inversely correlated with disease activity. These findings strongly suggest that EM CD8(+) T cells in the SF are increased, likely because of inflammation, and they may be involved in modulating inflammation, thereby affecting the development and progression of RA.
BackgroundScrub typhus, caused by Orientia tsutsugamushi infection, is one of the main causes of febrile illness in the Asia-Pacific region. Although cell-mediated immunity plays an important role in protection, little is known about the phenotypic changes and dynamics of leukocytes in scrub typhus patients.Methodology/Principal FindingsTo reveal the underlying mechanisms of immunological pathogenesis, we extensively analyzed peripheral blood leukocytes, especially T cells, during acute and convalescent phases of infection in human patients and compared with healthy volunteers. We observed neutrophilia and CD4+ T lymphopenia in the acute phase of infection, followed by proliferation of CD8+ T cells during the convalescent phase. Massive T cell apoptosis was detected in the acute phase and preferential increase of CD8+ T cells with activated phenotypes was observed in both acute and convalescent phases, which might be associated or correlated with elevated serum IL-7 and IL-15. Interestingly, peripheral Treg cells were significantly down-regulated throughout the disease course.Conclusions/SignificanceThe remarkable decrease of CD4+ T cells, including Treg cells, during the acute phase of infection may contribute to the loss of immunological memory that are often observed in vaccine studies and recurrent human infection.
Background Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular bacterium. Previously, a large number of genes that encode proteins containing eukaryotic protein-protein interaction motifs such as ankyrin-repeat (Ank) domains were identified in the O. tsutsugamushi genome. However, little is known about the Ank protein function in O. tsutsugamushi. Methodology/Principal FindingsTo characterize the function of Ank proteins, we investigated a group of Ank proteins containing an F-box–like domain in the C-terminus in addition to the Ank domains. All nine selected ank genes were expressed at the transcriptional level in host cells infected with O. tsutsugamushi, and specific antibody responses against three Ank proteins were detected in the serum from human patients, indicating an active expression of the bacterial Ank proteins post infection. When ectopically expressed in HeLa cells, the Ank proteins of O. tsutsugamushi were consistently found in the nucleus and/or cytoplasm. In GST pull-down assays, multiple Ank proteins specifically interacted with Cullin1 and Skp1, core components of the SCF1 ubiquitin ligase complex, as well as the eukaryotic elongation factor 1 α (EF1α). Moreover, one Ank protein co-localized with the identified host targets and induced downregulation of EF1α potentially via enhanced ubiquitination. The downregulation of EF1α was observed consistently in diverse host cell types infected with O. tsutsugamushi.Conclusion/SignificanceThese results suggest that conserved targeting and subsequent degradation of EF1α by multiple O. tsutsugamushi Ank proteins could be a novel bacterial strategy for replication and/or pathogenesis during mammalian host infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.