Recent advances in genome and transcriptome analysis have contributed to the identification of many potential cancerrelated genes. Furthermore, biological and clinical investigations of the candidate genes provide us with a better understanding of carcinogenesis and development of cancer treatment. Here, we report a novel role of KIAA1324 as a tumor suppressor in gastric cancer. We observed that KIAA1324 was downregulated in most gastric cancers from transcriptome sequencing data and found that histone deacetylase was involved in the suppression of KIAA1324. Low KIAA1324 levels were associated with poor prognosis in gastric cancer patients. In the xenograft model, KIAA1324 significantly reduced tumor formation of gastric cancer cells and decreased development of preformed tumors. KIAA1324 also suppressed proliferation, invasion, and drug resistance and induced apoptosis in gastric cancer cells. Through protein interaction analysis, we identified GRP78 (glucose-regulated protein 78 kDa) as a KIAA1324-binding partner. KIAA1324 blocked oncogenic activities of GRP78 by inhibiting GRP78-caspase-7 interaction and suppressing GRP78-mediated AKT activation, thereby inducing apoptosis. In conclusion, our study reveals a tumor suppressive role of KIAA1324 via inhibition of GRP78 oncoprotein activities and provides new insight into the diagnosis and treatment of gastric cancer. Cancer Res; 75(15); 3087-97. Ó2015 AACR.
Homozygous deletion is a frequent mutational mechanism of silencing tumor suppressor genes in cancer. Therefore, homozygous deletions have been analyzed for identification of tumor suppressor genes that can be utilized as biomarkers or therapeutic targets for cancer treatment. In this study, to elucidate potential tumor suppressor genes involved in gastric cancer (GC), we analyzed the entire set of large homozygous deletions in six human GC cell lines through genome- and transcriptome-wide approaches. We identified 51 genes in homozygous deletion regions of chromosomes and confirmed the deletion frequency in tumor tissues of 219 GC patients from The Cancer Genome Atlas database. We evaluated the effect of homozygous deletions on the mRNA level and found significantly affected genes in chromosome bands 9p21, 3p22, 5p14, and 6q15. Among the genes in 9p21, we investigated the potential tumor suppressive effect of KLHL9. We demonstrated that ectopic expression of KLHL9 inhibited cell proliferation and tumor formation in KLHL9-deficient SNU-16 cell line. In addition, we observed that homozygous focal deletions generated truncated transcripts of TGFBR2, CTNNA1, and STXBP5. Ectopic expression of two kinds of TGFBR2-reverse GADL1 fusion genes suppressed TGF-β signaling, which may lead to the loss of sensitivity to TGF-β tumor suppressive activity. In conclusion, our findings suggest that novel tumor suppressor genes that are aberrantly expressed through homozygous deletions may play important roles in gastric tumorigenesis.
In most human cancers the Myc proto-oncogene is highly activated. Dysregulation of Myc oncoprotein contributes to tumorigenesis in numerous tissues and organs. Thus, targeting Myc stability could be a crucial step for cancer therapy. Here we report Smad7 as a key molecule regulating Myc stability and activity by recruiting the F-box protein, Skp2. Ectopic expression of Smad7 downregulated the protein level of Myc without affecting the transcription level, and significantly repressed its transcriptional activity, leading to inhibition of cell proliferation and tumorigenic activity. Furthermore, Smad7 enhanced ubiquitylation of Myc through direct interaction with Myc and recruitment of Skp2. Ablation of Smad7 resulted in less sensitivity to the growth inhibitory effect of TGF-b by inducing stable Myc expression. In conclusion, these findings that Smad7 functions in Myc oncoprotein degradation and enhances the cytostatic effect of TGF-b signaling provide a possible new therapeutic approach for cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.