How do people decide how general a causal relationship is, in terms of the entities or situations it applies to? What features do people use to decide whether a new situation is governed by a new causal law or an old one? How can people make these difficult judgments in a fast, efficient way? We address these questions in two experiments that ask participants to generalize from one (Experiment 1) or several (Experiment 2) causal interactions between pairs of objects. In each case, participants see an agent object act on a recipient object, causing some changes to the recipient. In line with the human capacity for few-shot concept learning, we find systematic patterns of causal generalizations favoring simpler causal laws that extend over categories of similar objects. In Experiment 1, we find that participants’ inferences are shaped by the order of the generalization questions they are asked. In both experiments, we find an asymmetry in the formation of causal categories: participants preferentially identify causal laws with features of the agent objects rather than recipients. To explain this, we develop a computational model that combines program induction (about the hidden causal laws) with non-parametric category inference (about their domains of influence). We demonstrate that our modeling approach can both explain the order effect in Experiment 1 and the causal asymmetry, and outperforms a naïve Bayesian account while providing a computationally plausible mechanism for real-world causal generalization.
How do people decide how general a causal relationship is, in terms of the entities or situations it applies to? What features do people use to decide whether a new situation is governed by a new causal law or an old one? How can people make these difficult judgments in a fast, efficient way? We address these questions in two experiments that ask participants to generalize from one (Experiment 1) or several (Experiment 2) causal interactions between pairs of objects. In each case, participants see an agent object act on a recipient object, causing some changes to the recipient. In line with the human capacity for few-shot concept learning, we find systematic patterns of causal generalizations favoring simpler causal laws that extend over categories of similar objects. In Experiment 1, we find that participants’ inferences are shaped by the order of the generalization questions they are asked. In both experiments, we find an asymmetry in the formation of causal categories: participants preferentially identify causal laws with features of the agent objects rather than recipients. To explain this, we develop a computational model that combines program induction (about the hidden causal laws) with non-parametric category inference (about their domains of influence). We demonstrate that our modeling approach can both explain the order effect in Experiment 1 and the causal asymmetry, and outperforms a naive Bayesian account while providing a computationally plausible mechanism for real world causal generalization.
Poster discussion Hub abstractsResults: For both operators, intra-and interoperator reproducibility were high when using both methods (ICC > 0.950). There was no statistical difference of the Mod-MPI values between measured by conventional and new method (p = 0.328). Among the components of Mod-MPI measured by new method, ET showed the highest intra-and interoperator reproducibility (ICC = 0.983 and 0.964, respectively), while IRT demonstrated the lowest reproducibility (ICC = 0.839 and 0.789, respectively). Conclusions: Right Mod-MPI measurement after synchronisation of the right ventricular inflow and outflow images is a reliable technique for evaluating fetal right cardiac function and can separately evaluates systolic and diastolic function.
P08.06Value of fetal intelligent navigation echocardiography with colour flow imaging (5D heart colour) in the display of key diagnostic elements in basic fetal echocardiographic views
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.