Smoothed Particle Hydrodynamics (SPH) method is used here to simulate a heaving point-absorber with a Power TakeOff system (PTO). The SPH-based code DualSPHysics is first validated with experimental data of regular waves interacting with the point-absorber. Comparison between the numerical and experimental heave displacement and velocity of the device show a good agreement for a given regular wave condition and different configurations of the PTO system. The validated numerical tool is then employed to investigate the efficiency of the proposed system. The efficiency, which is defined here as the ratio between the power absorbed by the point-absorber and its theoretical maximum, is obtained for different wave conditions and several arrangements of the PTO. Finally, the effects of highly energetic sea states on the buoy are examined through alternative configurations of the initial system. A survivability study is performed by computing the horizontal and vertical forces exerted by focused waves on the wave energy converter (WEC). The yield criterion is used to determine that submerging the heaving buoy at a certain depth is the most effective strategy to reduce the loads acting on the WEC and its structure, while keeping the WEC floating at still water level is the worst-case scenario.
The present work addresses the need for an efficient, versatile, accurate and open-source numerical tool to be used during the design stage of wave energy converters (WECs). The device considered here is the heaving point-absorber developed and tested by Sandia National Laboratories. The smoothed particle hydrodynamics (SPH) method, as implemented in DualSPHysics, is proposed since its meshless approach presents some important advantages when simulating floating devices. The dynamics of the power take-off system are also modelled by coupling DualSPHysics with the multi-physics library Project Chrono. A satisfactory matching between experimental and numerical results is obtained for: (i) the heave response of the device when forced via its actuator; (ii) the vertical forces acting on the fixed device under regular waves and; (iii) the heave response of the WEC under the action of both regular waves and the actuator force. This proves the ability of the numerical approach proposed to simulate accurately the fluid–structure interaction along with the WEC’s closed-loop control system. In addition, radiation models built from the experimental and WAMIT results are compared with DualSPHysics by plotting the intrinsic impedance in the frequency domain, showing that the SPH method can be also employed for system identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.