In the present work, the sludge treatment performance of a sludge treatment using a rotor-stator type hydrodynamic cavitation reactor (HCR) was investigated. To verify the performance, a comparison with an ultrasonic bath was conducted in four experimental cases using three assessment factors. The HCR consisted of a rotor and three covers with inserted dimples resulting in variation of the cross-sectional area in a flow. The experimental cases were established using the same energy consumption for each device. Disintegration performance was analyzed with assessment factors using particle size distribution and sludge volume index (SVI), oxidation performance using total chemical oxygen demand (TCOD) and volatile suspended solids (VSS) reduction rate, as well as solubilization rate using soluble chemical oxygen demand (SCOD). As a result, the particle disintegration and oxidation performance of the HCR were generally superior to those of the ultrasonic bath. However, due to the contradictory interactions of these factors, the solubilization rate of the two devices was measured similarly as 42.3% and 41.4% for each device. Results of the current study proved that the HCR can be an effective, promising and clean sludge treatment technique for use in wastewater treatment plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.