The structure, electrical conduction, thermal expansion and electrochemical properties of the La0.6Sr0.4Co0.2Fe0.8O3–δ + La2NiO4+δ (LSCF‐LNO) composite cathodes were investigated with regard to the volume fraction of the LNO composition. No chemical reaction product between the two constituent phases was found for the composite cathodes sintered at 1,400 °C for 10 h within the sensitivity of the XRD. Compared to the performance of the LSCF cathode, the LNO composition in the composite cathode plays a role in deteriorating both electrical conductivity and electrochemical properties, however, improving the thermal expansion properties. The trade‐off between electrical conducting and thermal expansion classifies the composite cathode containing 30 volume percent (vol.%) LNO as the optimum composition. For characterizing cathode performance in a single cell, a slurry spin coating technique was employed to prepare a porous cathode layer as well as a YSZ/Ce0.8Sm0.2O3–δ (SDC) electrolyte. The optimum conditions for fabricating the YSZ/SDC electrolyte were investigated. The resulting single cell with 70 vol.% LSCF‐30 vol.%LNO (LSCF‐LNO30) cathode shows a power density of 497 mW cm–2 at 800 °C, which is lower than that of the cell with a LSCF cathode, but still within the limits acceptable for practical applications.
The properties of green sheet were investigated in order to understanding an effects of organic solvent mixture ratio for solid oxide fuel cells fabrication. The purpose of this work is to optimize the slurry condition using the design of experiment to improve green sheet properties. The elongation increased with increasing amount of binder and solvent. With increasing amount of solvent, the air permeability increased but the tensile strength decreased. The best properties of the green sheet appeared amount of the binder 17 wt%, solvent 35 wt% and powder 48 wt%. The optimum condition of green and sintered density for solid oxide fuel cells fabrication was obtained in the sample pressured at 800 kgf/㎠.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.