Caffeic acid (3,4-dihydroxycinnamic acid) is a well-known phenolic phytochemical present in many foods, including coffee. Recent studies suggested that caffeic acid exerts anticarcinogenic effects, but little is known about the underlying molecular mechanisms and specific target proteins. In this study, we found that Fyn, one of the members of the non-receptor protein tyrosine kinase family, was required for ultraviolet (UV) B-induced cyclooxygenase-2 (COX-2) expression, and caffeic acid suppressed UVB-induced skin carcinogenesis by directly inhibiting Fyn kinase activity. Caffeic acid more effectively suppressed UVB-induced COX-2 expression and subsequent prostaglandin E 2 production in JB6 P1 mouse skin epidermal (JB6 P1) cells compared with chlorogenic acid (5-O-caffeoylquinic acid), an ester of caffeic acid with quinic acid. Data also revealed that caffeic acid more effectively induced the downregulation of COX-2 expression at the transcriptional level mediated through the inhibition of activator protein-1 (AP-1) and nuclear factor-kB transcription activity compared with chlorogenic acid. Fyn kinase activity was suppressed more effectively by caffeic acid than by chlorogenic acid, and downstream mitogen-activated protein kinases (MAPKs) were subsequently blocked. Pharmacological Fyn kinase inhibitor (3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine and leflunomide) data also revealed that Fyn is involved in UVBinduced COX-2 expression mediated through the phosphorylation of MAPKs in JB6 P1 cells. Pull-down assays revealed that caffeic acid directly bound with Fyn and non-competitively with adenosine triphosphate. In vivo data from mouse skin also supported the idea that caffeic acid suppressed UVB-induced COX-2 expression by blocking Fyn kinase activity. These results suggested that this compound could act as a potent chemopreventive agent against skin cancer.
We evaluated the effects of the two main kiwifruit cultivars (gold kiwifruit (GOK) and green kiwifruit (GRK)) and their active phenolic compound, quercetin, on H 2 O 2 -induced inhibition of gap-junction intercellular communication (GJIC) in WB-F344 rat liver epithelial cells. We found that both GOK and GRK protect WB-F344 cells from H 2 O 2 -induced inhibition of GJIC. The extracellular signal-regulated protein kinase 1/2 (ERK1/2) -connexin 43 (Cx43) signalling pathway is crucial for the regulation of GJIC, and both GOK and GRK blocked the H 2 O 2 -induced phosphorylation of Cx43 and ERK1/2 in WB-F344 cells. Quercetin alone attenuated the H 2 O 2 -mediated ERK1/2 -Cx43 signalling pathway and consequently reversed H 2 O 2 -mediated inhibition of GJIC in WB-F344 cells. A free radical-scavenging assay using 1,1-diphenyl-2-picrylhydrazyl showed that the scavenging activity of quercetin was higher than that of a synthetic antioxidant, butylated hydroxytoluene, per mol, suggesting that the chemopreventive effect of quercetin on H 2 O 2 -mediated inhibition of ERK1/2 -Cx43 signalling and GJIC may be mediated through its free radical-scavenging activity. Since the carcinogenicity of reactive oxygen species such as H 2 O 2 is attributable to the inhibition of GJIC, GOK, GRK and quercetin may have chemopreventive potential by preventing the inhibition of GJIC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.