Mobile edge clouds (MECs) bring the benefits of the cloud closer to the user, by installing small cloud infrastructures at the network edge. This enables a new breed of real-time applications, such as instantaneous object recognition and safety assistance in intelligent transportation systems, that require very low latency. One key issue that comes with proximity is how to ensure that users always receive good performance as they move across different locations. Migrating services between MECs is seen as the means to achieve this. This article presents a layered framework for migrating active service applications that are encapsulated either in virtual machines (VMs) or containers. This layering approach allows a substantial reduction in service downtime. The framework is easy to implement using readily available technologies, and one of its key advantages is that it supports containers, which is a promising emerging technology that offers tangible benefits over VMs. The migration performance of various real applications is evaluated by experiments under the presented framework. Insights drawn from the experimentation results are discussed.
Federated learning is a recent approach for distributed model training without sharing the raw data of clients. It allows model training using the large amount of user data collected by edge and mobile devices, while preserving data privacy. A challenge in federated learning is that the devices usually have much lower computational power and communication bandwidth than machines in data centers. Training large-sized deep neural networks in such a federated setting can consume a large amount of time and resources. To overcome this challenge, we propose a method that integrates model pruning with federated learning in this paper, which includes initial model pruning at the server, further model pruning as part of the federated learning process, followed by the regular federated learning procedure. Our proposed approach can save the computation, communication, and storage costs compared to standard federated learning approaches. Extensive experiments on real edge devices validate the benefit of our proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.