Soy sauce, a well-known seasoning in Asia and throughout the world, consists of many metabolites that are produced during fermentation or aging and that have various health benefits. However, their comprehensive assessment has been limited due to targeted or instrumentally specific analysis. This paper presents for the first time a metabolic characterization of soy sauce, especially that aged up to 12 years, to obtain a global understanding of the metabolic variations through (1)H NMR spectroscopy coupled with multivariate pattern recognition techniques. Elevated amino acids and organic acids and the consumption of carbohydrate were associated with continuous involvement of microflora in aging for 12 years. In particular, continuous increases in the levels of betaine were found during aging for up to 12 years, demonstrating that microbial- or enzyme-related metabolites were also coupled with osmotolerant or halophilic bacteria present during aging. This work provides global insights into soy sauce through a (1)H NMR-based metabolomic approach that enhances the current understanding of the holistic metabolome and allows assessment of soy sauce quality.
Meju, a brick of dried fermented soybean naturally inoculated with microorganisms, is a starter used for producing traditional Korean fermented soybean products such as soybean paste (doenjang) and soy sauce (ganjang). In order to reduce aging time during production of soybean paste and soy sauce, high pressure (HP) treatment was applied to the meju starter at 500 MPa of pressure for 10 min at 15 degrees C. Fermentative behaviors of normal and HP-treated meju were assessed and compared through physicochemical and (1)H NMR-based metabolomic analysis. All mejues were incubated for 3 weeks at 30 degrees C. At 1 week of incubation, total bacterial population decreased mainly due to a reduction of water content by spontaneous evaporation during the incubation period. As the incubation time increased, glutamate, proline, betain, choline, and phosphocholine levels increased in both normal and HP-treated mejues, indicating that microorganisms in the mejues synthesize these metabolites to endure intracellular hyperosmotic stress induced by the reduction in water content. Through 3 weeks of incubation, the amino-type nitrogen contents and neutral protease activities in HP-treated meju were significantly higher (p < 0.05) than in normal meju, even though total bacterial content in HP-treated meju was 2 or 3 times lower. Moreover, marked increases in glycerol, acetate, tyrosine, and choline levels were observed in HP-treated meju compared to normal meju. In particular, higher levels of tyrosine in HP-treated meju were consistent with the increased neutral protease activities compared to normal meju, indicating an improvement in enzyme stability with HP treatment. These findings highlight a new or better understanding of the influence of the HP or physical treatments on fermentative products in food processing, such as those associated with soybean paste and soy sauce, regarding metabolic behaviors in fermentative starter induced by HP treatment.
The effect of the amount of water added during fermentation on the quality of takju (rice beer) was investigated. Takju was made by adding water 2-fold (A), 4-fold (B), 5-fold (C), and 6-fold (D), respectively, of the rice weight (w/w). Although the amount of takju increased in proportion to the amount of water added before fermentation, the amounts of B, C, and D were 1.17-1.19 times larger than the amount in A, and the total acidities of B, C, and D were 1.34, 1.40 and 1.46 times higher than those in A after adjusting alcohol content to 6%(v/v). Moreover, the sensory preferences for B, C, and D were higher overall than those for A, which was suggested to be due to the amount of sweet, sour, and bitter tastes as well as body in A. Different types of takju could be made by changing the amount of water added before fermentation. 알코올발효액의 알코올 함량은 술덧을 체로 걸러 시료 50 mL를 취하 고 3차 증류수를 50 mL 첨가하여 80 mL 이상을 증류하였다. 증류 후 3차 증류수를 첨가하여 100 mL로 용량을 보정한 뒤 주정계
The purpose of this study is to understand what health and safety hazards low-income households are subject to by surveying the real conditions of the defective housing of low-income households, and to find improvement strategies. For this purpose, we visited the concentrated areas of the multi-dwelling unit (MDU) (also known as multi-family residential) housing in Jungwon-gu and Sujeong-gu in Seongnam City, Kyunggi-do, one of the representative areas in Korea with a massive distribution of the low-income class. Based on the survey data, the level of housing defects were comparison analyzed per income decile (decile 1, decile 2, deciles 3–4), and per housing location, in the categories of subsidence, cracks in the wall, delamination, water leakage/infiltration, condensation, and contamination. The housing condition per income class was more defective in the decile 2 households rather than in the decile 2 households, and in the substructure more than in the superstructure. Among the six defects, contamination problems, caused by sub-standard living conditions, were the most frequent cases. Structural defects, subsidence and cracks in the wall, were found in the main living areas—the bedrooms and the living rooms. It was confirmed in this study that the conditions of low-income housing are serious, and that it is necessary to explore specific countermeasures in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.