The fatigue behavior of carburized components such as automotive transmission gears is very complex due to hardness and microstructure difference, residual stresses and multi-axial stress states developed between the case and the core. In addition, automotive gears in service, commonly used in helical type, are actually subjected to complex stress conditions such as bending, torsion, and contact stress states. This study presents experimental and analytical results on deformation behavior of carburized steels, widely used in automotive gears, under cyclic stress conditions including axial and torsion loadings. Axial fatigue tests and rotating bending fatigue tests are also included. Predictions of cyclic deformation and fatigue behaviors of the carburized steel with two-layer model are compared with experimental results. The carburized steel investigated in this study exhibited cyclic softening under both axial loading and torsional loading. Predicted results with simple two-layer model for the cyclic deformation and fatigue behaviors were comparatively similar to the experimental data.
As global regulations of CO<sub>2</sub> emissions and fuel consumption efficiency become more strict, the automotive powertrain system has become more compact with lower lubrication viscosity. With the current trends in powertrain system improvement, the operating conditions of powertrain components such as gears are becoming more severe. As a result, it is increasingly important to improve the strength and durability of the materials used for the powertrain system by optimizing alloy design and heat treatment. Much research and development has focused on improving components by heat treatment, and especially carburization. Also, many different alloy concepts, such as Fe-Cr-Mo or Fe-Cr-Ni systems have been proposed for automotive components. Among various approaches, Cr and Si , and solid solution hardening, are known to effectively increase hardenability. However, it has been reported in many works that the carburized case depth can also be reduced by increasing the Cr/Si content, due to oxide film formation. The mechanism of Cr/Si oxide film formation during carburization has not yet been clearly determined. In the present work, therefore, the mechanism of surface oxide film formation during carburization was examined. Also, the microstructure, composition and crystal structure of different oxides were examined and compared in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.