The intron has been a big biological mystery since it was first discovered in several aspects. First, all of the completely sequenced eukaryotes harbor introns in the genomic structure, whereas no prokaryotes identified so far carry introns. Second, the amount of total introns varies in different species. Third, the length and number of introns vary in different genes, even within the same species genome. Fourth, all introns are copied into RNAs by transcription and DNAs by replication processes, but intron sequences do not participate in protein-coding sequences. The existence of introns in the genome should be a burden to some cells, because cells have to consume a great deal of energy to copy and excise them exactly at the correct positions with the help of complicated spliceosomal machineries. The existence throughout the long evolutionary history is explained, only if selective advantages of carrying introns are assumed to be given to cells to overcome the negative effect of introns. In that regard, we summarize previous research about the functional roles or benefits of introns. Additionally, several other studies strongly suggesting that introns should not be junk will be introduced.
Dilated cardiomyopathy (DCM) is one of the main causes of heart failure (called cardiomyopathies) in adults. Alterations in epigenetic regulation (i.e., DNA methylation) have been implicated in the development of DCM. Here, we identified a total of 1828 differentially methylated probes (DMPs) using the Infinium 450K HumanMethylation Bead chip by comparing the methylomes between 18 left ventricles and 9 right ventricles. Alterations in DNA methylation levels were observed mainly in lowly methylated regions corresponding to promoter-proximal regions, which become hypermethylated in severely affected left ventricles. Subsequent mRNA microarray analysis showed that the effect of DNA methylation on gene expression regulation is not unidirectional but is controlled by the functional sub-network context. DMPs were significantly enriched in the transcription factor binding sites (TFBSs) we tested. Alterations in DNA methylation were specifically enriched in the cis-regulatory regions of cardiac development genes, the majority of which are involved in ventricular development (e.g., TBX5 and HAND1).
Alterations in DNA methylation and gene expression have been implicated in the development of human dilated cardiomyopathy (DCM). Differentially methylated probes (DMPs) and differentially expressed genes (DEGs) were identified between the left ventricle (LV, a pathological locus for DCM) and the right ventricle (RV, a proxy for normal hearts). The data in this DiB are for supporting our report entitled “Methylome analysis reveals alterations in DNA methylation in the regulatory regions of left ventricle development genes in human dilated cardiomyopathy” (Bong-Seok Jo, In-Uk Koh, Jae-Bum Bae, Ho-Yeong Yu, Eun-Seok Jeon, Hae-Young Lee, Jae-Joong Kim, Murim Choi, Sun Shim Choi, 2016) [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.