In olive flounder (Paralichthys olivaceus), growth performance, expression of growth-related factors, digestive physiology, and gut microbiota were assessed under farm conditions in the fish fed diets with low levels of fishmeal. Four experimental diets were prepared, FM70 [control (CON), 70% fishmeal], FM45 (45% fishmeal), FM35A (35% fishmeal), and FM35B (35% fishmeal + insect meal), and fed to the fish for five months. The CON-fed fish had the highest plasma GH, but IGF-1 and hepatic IGF-1 mRNA expression of the olive flounder fed diets with low-fishmeal levels did not significantly differ among diets. The intestinal villus length, muscular thickness, and the number of goblet cells were statistically similar, and ocular examination of hepatopancreas showed no discernable difference in all experimental diets. The chymotrypsin content of FM35B-fed fish is significantly lower, but trypsin and lipase contents are similar. The diversity of gut microbiota did not differ among groups, although the FM35B group had a higher composition of Firmicutes. Thus, a diet with reduced fishmeal content and several alternative protein sources can be used as feed ingredients in feed formulation for olive flounder reared under typical aquaculture farm conditions.
Crassostrea gigas is a frequently studied species in understanding physiological processes in bivalves. Similar to other animals, oysters store glucose in the body as glycogen. Glycogen is known to supply energy for germ cell development and maintenance. Glycogen is synthesized by glycogen synthase. GSK3β regulates glycogen synthase activity and plays an important role in glycogen synthesis. Therefore, this study aims to examine the effect of GSK3β on the annual cycle of oysters and the glycogen synthesis pathway and to investigate the energy pathway in comparison with seasonal variation. Oysters were sampled monthly for one year and were subjected to glycogen content, RT-PCR, FISH, and western blot analysis. The year-round glycogen content significantly differs only in the mantle edge during spring and summer of both sexes but not in labial palp, digestive gland, gonad, and adductor muscle. The expression of GSK3β mRNA level was highest in October for females and April for males. Both sexes had the lowest expression in July. In the adductor muscle, females and males showed the highest expression in April and the lowest in July and October. The pattern of GSK3β expression in gonads and adductor muscle was similarly confirmed through FISH. As a result of examining the signaling system, p-GSK3β (serine 9) increased. At the same time, glycogen synthase decreased in May when the condition index was the highest, p-GSK3β decreased in October and July when spawning occurred, and glycogen synthase increased. Overall, it is thought that p-GSK3β expression is high in C. gigas at ripe, which inhibits glycogen synthesis and is used as energy for growth and maturation. Glycogen synthesis occurs for energy storage during degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.