Adult plant resistance (APR) is an enigmatic phenomenon in which resistance genes are ineffective in protecting seedlings from disease but confer robust resistance at maturity. Maize has multiple cases in which genes confer APR to northern leaf spot, a lethal disease caused by Cochliobolus carbonum race 1 (CCR1). The first identified case of APR in maize is encoded by a hypomorphic allele, Hm1A, at the hm1 locus. In contrast, wild-type alleles of hm1 provide complete protection at all developmental stages and in every part of the maize plant. Hm1 encodes an NADPH-dependent reductase, which inactivates HC-toxin, a key virulence effector of CCR1. Cloning and characterization of Hm1A ruled out differential transcription or translation for its APR phenotype and identified an amino acid substitution that reduced HC-toxin reductase (HCTR) activity. The possibility of a causal relationship between the weak nature of Hm1A and its APR phenotype was confirmed by the generation of two new APR alleles of Hm1 by mutagenesis. The HCTRs encoded by these new APR alleles had undergone relatively conservative missense changes that partially reduced their enzymatic activity similar to HM1A. No difference in accumulation of HCTR was observed between adult and juvenile plants, suggesting that the susceptibility of seedlings derives from a greater need for HCTR activity, not reduced accumulation of the gene product. Conditions and treatments that altered the photosynthetic output of the host had a dramatic effect on resistance imparted by the APR alleles, demonstrating a link between the energetic or metabolic status of the host and disease resistance affected by HC-toxin catabolism by the APR alleles of HCTR.
Infectious bursal disease virus (IBDV) infection destroys the bursa of Fabricius, causing immunosuppression and rendering chickens susceptible to secondary bacterial or viral infections. IBDV large-segment-protein-expressing DNA has been shown to confer complete protection of chickens from infectious bursal disease (IBD). The purpose of the present study was to compare DNA-vaccinated chickens and unvaccinated chickens upon IBDV challenge by transcriptomic analysis of bursa regarding innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport. One-day-old specific-pathogen-free chickens were vaccinated intramuscularly three times at weekly intervals with IBDV large-segment-protein-expressing DNA. Chickens were challenged orally with 8.2 × 10(2) times the egg infective dose (EID)50 of IBDV strain variant E (VE) one week after the last vaccination. Bursae collected at 0.5, 1, 3, 5, 7, and 10 days post-challenge (dpc) were subjected to real-time RT-PCR quantification of bursal transcripts related to innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport. The expression levels of granzyme K and CD8 in DNA-vaccinated chickens were significantly (p < 0.05) higher than those in unvaccinated chickens upon IBDV challenge at 0.5 or 1 dpc. The expression levels of other genes involved in innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport were not upregulated or downregulated in DNA-vaccinated chickens during IBDV challenge. Bursal transcripts related to innate immunity and inflammation, including TLR3, MDA5, IFN-α, IFN-β, IRF-1, IRF-10, IL-1β, IL-6, IL-8, iNOS, granzyme A, granzyme K and IL-10, were upregulated or significantly (p < 0.05) upregulated at 3 dpc and later in unvaccinated chickens challenged with IBDV. The expression levels of genes related to immune cell regulation, apoptosis and glucose transport, including CD4, CD8, IL-2, IFN-γ, IL-12(p40), IL-18, GM-CSF, GATA-3, p53, glucose transporter-2 and glucose transporter-3, were upregulated or significantly (p < 0.05) upregulated at 3 dpc and later in unvaccinated chickens challenged with IBDV. Taken together, the results indicate that the bursal transcriptome involved in innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport, except for granzyme K and CD8, was not differentially expressed in DNA-vaccinated chickens protected from IBDV challenge.
The nuclear pore complex (NPC) regulates the movement of macromolecules between the nucleus and cytoplasm. Dysfunction of many components of the NPC results in human genetic diseases, including triple A syndrome (AAAS) as a result of mutations in ALADIN. Here we report a nonsense mutation in the maize ortholog, aladin1 (ali1-1), at the orthologous amino acid residue of an AAAS allele from humans, alters plant stature, tassel architecture, and asymmetric divisions of subsidiary mother cells (SMCs). Crosses with the stronger nonsense allele ali1-2 identified complex allele interactions for plant height and aberrant SMC division. RNA-seq analysis of the ali1-1 mutant identified compensatory transcript accumulation for other NPC components as well as gene expression consequences consistent with conservation of ALADIN1 functions between humans and maize. These findings demonstrate that ALADIN1 is necessary for normal plant development, shoot architecture, and asymmetric cell division in maize.
Adult plant resistance (APR) is an enigmatic phenomenon in which resistance genes are ineffective in protecting seedlings from disease but confer robust resistance at maturity. Maize has multiple cases in which genes confer APR to northern leaf spot, a lethal disease caused byCochliobolus carbonumrace 1 (CCR1). The first identified case of APR in maize is encoded by a hypomorphic allele,Hm1A, at thehm1locus. In contrast, wild type alleles ofhm1provide complete protection at all developmental stages and in every part of the maize plant.Hm1encodes an NADPH-dependent reductase, which inactivates HC-toxin, a key virulence effector of CCR1. Cloning and characterization ofHm1Aruled out differential transcription or translation for its APR phenotype and identified an amino acid substitution that reduced HC-toxin reductase (HCTR) activity. The possibility of a causal relationship between the weak nature ofHm1Aand its APR phenotype was confirmed by the generation of two new APR alleles ofHm1by mutagenesis. The HCTRs encoded by these new APR alleles had undergone relatively conservative missense changes that partially reduced their enzymatic activity similar to HM1A. No difference in accumulation of HCTR was observed between adult and juvenile plants, suggesting that the susceptibility of seedlings derives from a greater need for HCTR activity, not reduced accumulation of the gene product. Conditions and treatments that altered the photosynthetic output of the host had a dramatic effect on resistance imparted by the APR alleles, demonstrating a link between the energetic or metabolic status of the host and disease resistance affected by HC-toxin catabolism by the APR alleles of HCTR.AUTHOR SUMMARYAdult plant resistance (APR) is a phenomenon in which disease resistance genes are able to confer resistance at the adult stages of the plant but somehow fail to do so at the seedling stages. Despite the widespread occurrence of APR in various plant diseases, the mechanism underlying this trait remains obscure. It is not due to the differential transcription of these genes, and here we show that it is also not due to the differential translation or activity of the APR alleles of the maizehm1gene at different stages of development. Using a combination of molecular genetics, biochemistry and physiology, we present multiple lines of evidence that demonstrate that APR is a feature or symptom of weak forms of resistance. While the mature parts of the plant are metabolically robust enough to manifest resistance, seedling tissues are not, leaving them vulnerable to disease. Growth conditions that compromise the photosynthetic output of the plant further deteriorate the ability of the seedlings to protect themselves from pathogens.One sentence summaryCharacterization of adult plant resistance in the maize-CCR1 pathosystem reveals a causal link between weak resistance and APR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.