Soil is a fundamental resource and it is crucial to manage its quality in order to enhance agricultural productivity and environmental quality. Soil enzymes catalyze several biochemical reactions which result in the transformation of organic matter, and the release of inorganic nutrients for plant growth and nutrient cycling. Soil enzyme activities are useful biological soil quality indicators since they are operationally practical, very sensitive, integrative, easy to measure and more responsive to soil tillage and structure than other soil variables. There are several enzymes in soil, but those involved in hydrolases and the degradation of main litter components are used most often for evaluating soil quality. This paper reviews the roles of soil enzymes such as β-glucosidase, phosphatase and urease, as well as the implications of their activities for soil quality.
The productivity and residual benefits of four grain legumes to sorghum (Sorghum bicolor) grown in rotation were measured under semi-arid conditions over three cropping seasons. Two varieties of each of the grain legumes; cowpea (Vigna unguiculata); groundnut (Arachis hypogaea); pigeon pea (Cajanus cajan); Bambara groundnut (Vigna subterranea), and sorghum were grown during the first season. The same experiment was implemented three times in different, but adjacent fields that had similar soil types. At the end of the season the original plots were split in two and residues were either removed or incorporated into the subplots. The following season sorghum was planted in all subplots. In 2002/03 (314 mm rainfall) cowpeas produced the largest dry grain yield (0.98 and 1.36 t ha −1 ) among the legumes. During the wettest year (2003/04, 650 mm rainfall) groundnut had the highest yields (0.76 to 1.02 t ha −1 ). In 2004/05 (301 mm rainfall) most legume yields were less than 0.5 t ha −1 , except for pigeon pea. Estimates of % N from N 2 -fixation from the legumes were 15-50% (2002/03), 16-61% (2003/04) and 29-83% (2004/05). Soil water changes during the legume growth cycle were proportional to varietal differences in total legume biomass. Sorghum grain yield after legumes reached up to 1.62 t ha −1 in 2003/04 compared with 0.42 t ha −1 when following sorghum. In 2004/05, sorghum yields after legumes were also higher (up to 1.26 t ha −1 ) than sorghum after sorghum. Incorporation of crop residues had no significant effect on sorghum yield. Beneficial effect of legumes on yields of the subsequent sorghum crop were more readily explained by improvements in soil nitrogen supply than by the small observed changes in soil water relations. Our results demonstrate clear potential benefits for increasing grain legume cultivation in semi-arid environments through the use of improved germplasm, which also gave substantial increases in subsequent sorghum productivity (up 200% in a wet season and 30-100% in a dry season), compared with an unfertilized sorghum crop following sorghum.
Next to drought, poor soil fertility is the single biggest cause of hunger in Africa. ICRISATZimbabwe has been working for the past 10 years to encourage small-scale farmers to increase inorganic fertiliser use as the first step towards Africa's own Green Revolution. The program of work is founded on promoting small quantities of inorganic nitrogen (N) fertiliser (micro-dosing) in drought-prone cropping regions. Results from initial on-farm trials showed that smallholder farmers could increase their yields by 30-100% through application of micro doses, as little as 10 kg Nitrogen ha -1 . The question remained whether these results could be replicated across much larger numbers of farmers. Wide scale testing of the micro-dosing (17 kg Nitrogen ha -1 ) concept was initiated in 2003/2004, across multiple locations in southern Zimbabwe through relief and recovery programs. Each year more than 160,000 low resourced households received at least 25 kg of nitrogen fertiliser and a simple flyer in the vernacular explaining how to apply the fertiliser to a cereal crop. This distribution was accompanied by a series of simple paired plot demonstration with or without fertiliser, hosted by farmers selected by the community, where trainings were carried out and detailed labour and crop records were kept. Over a 3 year period more than 2,000 paired-plot trials were established and quality data collected from more than 1,200. In addition, experimentation to derive N response curves of maize (Zea mays L.), sorghum (Sorghum bicolor (L.) Moench) and pearl millet (Pennisetum glaucum (L.) R.Br.) in these environments under farmer management was conducted. The results consistently showed that micro-dosing (17 kg Nitrogen ha -1 ) with nitrogen fertiliser can increase grain yields by 30-50% across a broad spectrum of soil, farmer management and seasonal climate conditions. In order for a household to make a profit, farmers needed to obtain between 4 and 7 kg of grain for every kg of N applied depending on season. In fact farmers commonly obtained 15-45 kg of grain per kg of N input. The result provides strong evidence that lack of N, rather than lack of rainfall, is the primary constraint to cereal crop yields and that
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.