Synthesis of a size series of colloidal ZnTe/ZnSe (core/shell) quantum dots (QDs) is reported. Because of the unique Type-II characters, their emission can range over an extended wavelength regime, showing photoluminescence (PL) from blue to amber. The PL lifetime measures as long as 77 ns, which clearly indicates the Type-II characteristics. ZnTe/ZnSe (Core/Shell) QDs can be further passivated by ZnS layers, rendered in water, while preserving the optical and chemical stabilities and thus proved their potentials toward “nontoxic” biological or medical applications that are free from concerns regarding heavy-metal leakage. ZnTe/ZnSe Type-II QD/polymer hybrid organic solar cells are also showcased, promising environmentally friendly photovoltaic devices. ZnTe/ZnSe Type-II QD incorporated photovoltaic devices show 11 times higher power conversion efficiency, when compared to that of the control ZnSe QD devices. This results from the Type-II characteristic broad QD absorption up to extended wavelengths and the spatially separated Type-II excitons, which can enhance the carrier extractions. We believe that ZnTe/ZnSe-based Type-II band engineering can open many new possibilities as exploiting the safe material choice.
Zinc-blende CdSe cores are used as a substrate for the synthesis of core/shell nanocrystals, such as CdSe/ ZnS, CdSe/ZnSe/ZnS, and CdSe/CdS/ZnS. Only two monolayers of shell coverage for each material suffice to enhance the photoluminescence (PL) quantum efficiency and achieve ∼50% PL efficiency in water from all core/shell nanocrystals after ligand exchange with 3-mercaptopropionic acid. Powder X-ray diffraction (XRD) patterns and high-resolution transmission electron microscopy images confirm the coherent epitaxial growth of the zinc-blende shell for core/shell nanocrystals. The PL spectra obtained at 5 K illustrate the effects of the shell composition on deep-trap emission, which manifests the role of hole-trapping surface defects. The spectral shift in both the first absorption maximum and PL band varies with the shell composition following the simple band-offset picture. The shell-to-shell variation of the spectral shift and changes in XRD patterns suggests that the contraction of CdSe lattice occurs with the concomitant redshift in the PL band, most notably with the ZnS shell. Water-soluble nanocrystals show longer PL lifetimes than organicsoluble ones. The zinc-blende structure is considered a viable alternate replacing the wurtzite structure for the uniform growth of shells and the isotropic incorporation of capping ligands.
Temperature dependent photoluminescence (PL) spectroscopy in a range of 5 K to room temperature (RT, 290 K) and single dot blinking behavior were investigated for CdTe/CdSe (core/shell, C/S) quantum dots (QDs). The QDs show type-II characteristics as both of the valence and conduction band levels of the CdTe core are placed higher in energy than those of the CdSe shell. The thickness of the CdSe shell was varied to control the degree of type-II character, and bare CdTe QDs were used as controls. The CdTe/CdSe (C/S) QDs have unique PL properties including (i) high susceptibility to PL thermal quenching with an exciton dissociation energy as small as 18 meV, compared with 46 meV for the CdTe QD, (ii) smaller band gap change showing only half the reduction of the control within the temperature change, and (iii) up to 27% larger PL bandwidth broadening than the control. The unique temperature-dependent properties were enhanced as the type-II character was increased by the thicker CdSe shell. Single dot level PL intermittency characteristics were studied for quasi type-II CdTe/CdSe (C/S) QDs that have alloyed layers at the core-shell interface. The quasi type-II QDs exhibited more frequent PL intensity intermittence blinking on and off at 290 K when compared with the CdTe QDs. However, the blinking kinetics follows similar universal power law on/off probability distributions with the R on and R off exponents evaluated as 1.57 and 1.38, respectively.
Mid-infrared photothermal microscopy has been suggested as an alternative to conventional infrared microscopy because in addition to the inherent chemical contrast available upon vibrational excitation, it can feasibly achieve spatial resolution at the submicrometer level. Furthermore, it has substantial potential for real-time bioimaging for the observation of cellular dynamics without photodamage or photobleaching of fluorescent labels. We performed real-time imaging of oligodendrocytes to investigate cellular dynamics throughout the life cycle of a cell, revealing details of cell division and apoptosis, as well as cellular migration. In the case of live neurons, we observed a photothermal contrast associated with traveling protein complexes on an axon, which correspond to the transport of vesicles from the cell body to the dendritic branches of the neuron through the cytoskeleton. We anticipate that mid-infrared photothermal imaging will be of great use for gaining insights into the field of biophysical science, especially with regard to cellular dynamics and functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.