Background Intrauterine adhesion (IUA) is an adhesion of the uterine cavity or cervical canal resulting from damage to the basal layer of the endometrium; this condition is usually accompanied by fibrosis of the endometrium. Previous studies have demonstrated that human amniotic epithelial cells (hAECs) have stem cell characteristics; however, it is unclear whether hAECs have the therapeutic potential to restore fertility after IUA. Methods A murine IUA model was established by mechanical injury to the uterus. Then, 10 6 hAECs were transplanted by intraperitoneal injection. The endometrium thickness, number of glands, and fibrosis area were measured by hematoxylin and eosin (H&E) staining and Masson staining. Molecules (including vWF, VEGF, PCNA, ER, PR, LC3, and p62) related to endometrial angiogenesis, cell proliferation, and autophagy were assayed by IHC staining. Pregnancy outcomes were also evaluated. Finally, hAECs were cocultured with human endometrial mesenchymal stem cells (hEnSCs) damaged by H 2 O 2 to verify the paracrine effect on endometrial stromal cells in vitro. Results The IUA uterine cavity presented with adhesion and even atresia, accompanied by a thinner endometrium, fewer glands, increased fibrosis area, and fewer microvessels. However, hAECs significantly improved the uterine structure after IUA. After hAEC treatment, the endometrium was thicker, the number of endometrial glands was increased, fibrosis was reduced, and more microvessels were generated. The expression levels of VEGF, PCNA, and ER were increased in the hAEC-treated endometrium, indicating improvements in angiogenesis and stromal cell proliferation. hAECs also increased pregnancy outcomes in IUA mice, and the pregnancy rate and fetus number increased. Furthermore, we observed altered autophagy in the IUA uterine model, and hAEC transplantation upregulated autophagy. An in vitro study showed that hAECs activated autophagy in (hEnSCs) treated with H 2 O 2 in a paracrine manner. Conclusions Our results demonstrated that hAECs have the potential to repair the uterus after injury, providing a new strategy for the prevention and treatment of Asherman syndrome.
Persistent high-risk human papilloma virus (HR-HPV) infection is the main risk factor for cervical cancer, threatening women’s health. Despite growing prophylactic vaccination, annual cervical cancer cases are still increasing and show a trend of younger onset age. However, therapeutic approaches towards HPV infection are still limited. 25-hydrocholesterol (25HC) has a wide-spectrum inhibitory effect on a variety of viruses. To explore efficient interventions to restrict HPV infection at an early time, we applied different pseudoviruses (PsV) to evaluate anti-HPV efficacy of 25HC. We tested PsV inhibition by 25HC in cervical epithelial-derived HeLa and C-33A cells, using high-risk (HPV16, HPV18, HPV59), possibly carcinogenic (HPV73), and low-risk (HPV6) HPV PsVs. Then we established murine genital HPV PsV infection models and applied IVIS to evaluate anti-HPV efficacy of 25HC in vivo. Next, with the help of confocal imaging, we targeted 25HC activity at filopodia upon HPV exposure. After that, we used RNA-seq and Western blotting to investigate 1) how 25HC disturbs actin cytoskeleton remodeling during HPV infection and 2) how prenylation regulates the cytoskeletal remodeling signaling pathway. Our findings suggest that 25HC perturbs F-actin rearrangement by reducing small GTPase prenylation. In this way, the phenomenon of HPV virion surfing was restricted, leading to failed infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.