Adulteration of diesel oil by kerosene is a serious problem because of air pollution resulting from car exhaust gases. The objective of this study was to develop a relatively simple optical measurement and data analysis method to screen low-adulterated diesel oils. For this purpose, we introduce the utilization of refractive index measurement with a refractometer, scanning of visible-near-infrared transmittance, transmittance data inversion using the singly subtractive Kramers-Kronig relation, and exploitation of so-called wavelength-dependent relative excess permittivity. It is shown for three different diesel oil grades, adulterated with kerosene, that the excess permittivity is a powerful measure for screening fake diesel oils. The excess relative permittivity of such binary mixtures also reveals hidden spectral fingerprints that are neither visible in dispersion data alone nor in spectral transmittance measurements alone. We believe that the excess permittivity data are useful in the case of screening adulteration of diesel oil by kerosene and can further be explored for practical sensing solutions, e.g., in quality inspection of diesel oils in refineries.
Adulteration of fuels is a major problem, especially in developing and third world countries. One such case is the adulteration of diesel oil by kerosene. This problem contributes to air pollution, which leads to other far-reaching adverse effects, such as climate change. The objective of this study was to develop a relatively easy measurement method based on an inexpensive, handheld Abbe refractometer for the detection of adulteration and estimation of the ascending order of the amount of kerosene present in adulterated samples in field conditions. We achieved this by increasing the volume of pure diesel sample in the adulterated diesel oil, and measuring the trend of refractive index change, and next, exploiting the true and ideal permittivities of the binary mixture. The permittivity can be obtained with the aid of the measured refractive index of a liquid. Due to the molecular interactions, the true and ideal permittivities of diesel–kerosene binary liquid mixture have a mismatch which can be used to screen for adulterated diesel oils. The difference between the true and the ideal permittivity is the so-called excess permittivity. We first investigated a training set of diesel oils in laboratory in Finland, using the accurate table model Abbe refractometer and depicting the behavior of the excess permittivity of the mixture of diesel oil and kerosene. Then, we measured same samples in the laboratory using a handheld refractometer. Finally, preliminary field measurements using the handheld device were performed in Tanzania to assess the accuracy and possibility of applying the suggested method in field conditions. We herein show that it is not only possible to detect even relatively low adulteration levels of diesel in kerosene—namely, 5%, 10%, and 15%—but also it is possible to monitor the ascending order of adulteration for different adulterated diesel samples. We propose that the method of increasing the volume of an unknown (suspected) diesel oil sample by adding a known authentic diesel sample and monitoring excess permittivity is useful for the screening of adulterated diesel oil in field measurement conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.