A particular interaction-diffusion mussel-algae model system for the development of spontaneous stationary young mussel bed patterning on a homogeneous substrate covered by a quiescent marine layer containing algae as a food source is investigated employing weakly nonlinear diffusive instability analyses. The main results of these analyses can be represented by plots in the ratio of mussel motility to algae lateral diffusion versus the algae reservoir concentration dimensionless parameter space. Regions corresponding to bare sediment and mussel patterns consisting of rhombic or hexagonal arrays and isolated clusters of clumps or gaps, an intermediate labyrinthine state, and homogeneous distributions of low to high density may be identified in this parameter space. Then those Turing diffusive instability predictions are compared with both relevant field and laboratory experimental evidence and existing numerical simulations involving differential flow migrating band instabilities for the associated interaction-dispersion-advection mussel-algae model system as well as placed in the context of the results from some recent nonlinear pattern formation studies.
A rhombic planform nonlinear cross-diffusive instability analysis is applied to a particular interaction-diffusion plant-ground water model system in an arid flat environment. This model contains a plant root suction effect as a cross-diffusion term in the ground water equation. In addition a threshold-dependent paradigm that differs from the usually employed implicit zero-threshold methodology is introduced to interpret stable rhombic patterns. These patterns are driven by root suction since the plant equation does not yield the required positive feedback necessary for the generation of standard Turing-type self-diffusive instabilities. The results of that analysis can be represented by plots in a root suction coefficient versus rainfall rate dimensionless parameter space. From those plots regions corresponding to bare ground and vegetative patterns consisting of isolated patches, rhombic arrays of pseudo spots or gaps separated by an intermediate rectangular state, and homogeneous distributions from low to high density may be identified in this parameter space. Then, a morphological sequence of stable vegetative states is produced upon traversing an experimentally-determined root suction characteristic curve as a function of rainfall through these regions. Finally, that predicted sequence along a rainfall gradient is compared with observational evidence relevant to the occurrence of leopard bush, pearled bush, or labyrinthine tiger bush vegetative patterns, used to motivate an aridity classification scheme, and placed in the context of some recent biological nonlinear pattern formation studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.