SUMMARY The enzyme endothelial nitric oxide synthase (eNOS) catalyzes the conversion of arginine, oxygen and NADPH to NO and citrulline. Previous results suggest an efficient, compartmentalized system for recycling of citrulline to arginine utilized for NO production. In support of this hypothesis, the recycling enzymes, argininosuccinate synthase (AS) and argininosuccinate lyase (AL), have been shown to colocalize with eNOS in caveolae, a subcompartment of the plasma membrane. Under unstimulated conditions, the degree of recycling is minimal. Upon stimulation of NO production by bradykinin, however, recycling is co-stimulated to the extent that more than 80% of the citrulline produced is recycled to arginine. These results suggest an efficient caveolar recycling complex that supports the receptor-mediated stimulation of endothelial NO production. To investigate the molecular basis for the unique location and function of endothelial AS and AL,endothelial AS mRNA was compared with liver AS mRNA. No differences were found in the coding region of the mRNA species, but significant differences were found in the 5′-untranslated region (5′-UTR). The results of these studies suggest that sequence in the endothelial AS-encoding gene, represented by position -92 nt to -43 nt from the translation start site in the extended AS mRNA 5′-UTRs, plays an important role in differential and tissue-specific expression. Overall, a strong evidential case has been developed supporting the proposal that arginine availability, governed by a caveolar-localized arginine regeneration system, plays a key role in receptor-mediated endothelial NO production.
Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR.
Although cellular levels of arginine greatly exceed the apparent K m for endothelial nitric-oxide synthase, current evidence suggests that the bulk of this arginine may not be available for nitric oxide (NO) production. We propose that arginine regeneration, that is the recycling of citrulline back to arginine, defines the essential source of arginine for NO production. To support this proposal, RNA interference analysis was used to selectively reduce the expression of argininosuccinate synthase (AS), because the only known metabolic role for AS in endothelial cells is in the regeneration of L-arginine from L-citrulline. Western blot analysis demonstrated a significant and dose-dependent reduction of AS protein as a result of AS small interfering RNA treatment with a corresponding diminished capacity to produce basal or stimulated levels of NO, despite saturating levels of arginine in the medium. Unanticipated, however, was the finding that the viability of AS small interfering RNA-treated endothelial cells was significantly decreased when compared with control cells. Trypan blue exclusion analysis suggested that the loss of viability was not because of necrosis. Two indicators, reduced expression of Bcl-2 and an increase in caspase activity, which correlated directly with reduced expression of AS, suggested that the loss of viability was because of apoptosis. The exposure of cells to an NO donor prevented apoptosis associated with reduced AS expression. Overall, these results demonstrate the essential role of AS for endothelial NO production and cell viability.Nitric oxide (NO) 1 is an important modulator for a wide range of functions including vasodilation of blood vessels, immune system function, angiogenesis, inhibition of leukocyte adhesion and platelet aggregation, gene regulation, and apoptosis (1-3). Moreover, NO has a dual role in cell viability depending on the tissue type and concentration. Either very high or very low concentrations of NO may induce cell death, whereas basal concentrations may inhibit apoptosis (4 -7). Previous work has shown that NO protects against serum starvation-(8), H 2 O 2 -(9), TNF-␣-(10), and oxidized low density lipoprotein-induced apoptosis (11, 12) in endothelial cells.Argininosuccinate synthase (AS), the rate-limiting step (13) in the regeneration of arginine from citrulline, catalyzes the synthesis of argininosuccinate, AMP, and inorganic pyrophosphate from citrulline, ATP, and aspartate. Argininosuccinate is then cleaved by argininosuccinate lyase (AL) to produce Larginine and fumarate. In the liver, AS and AL function together as components of the urea cycle, ultimately to form arginine from citrulline. Although the expression of AS and AL in the liver is high, both enzymes are found in most mammalian tissues, although at significantly lower levels. The discovery of arginine-derived NO, catalyzed by nitric-oxide synthases (NOSs), revealed a second role for AS and AL (1-3). Together with NOS, they function as part of a citrulline-NO cycle where AS and AL convert citrul...
Endothelial dysfunction associated with elevated serum levels of TNF-alpha observed in diabetes, obesity, and congenital heart disease results, in part, from the impaired production of endothelial nitric oxide (NO). Cellular NO production depends absolutely on the availability of arginine, substrate of endothelial nitric oxide synthase (eNOS). In this report, evidence is provided demonstrating that treatment with TNF-alpha (10 ng/ml) suppresses not only eNOS expression but also the availability of arginine via the coordinate suppression of argininosuccinate synthase (AS) expression in aortic endothelial cells. Western blot and real-time RT-PCR demonstrated a significant and dose-dependent reduction of AS protein and mRNA when treated with TNF-alpha with a corresponding decrease in NO production. Reporter gene analysis demonstrated that TNF-alpha suppresses the AS proximal promoter, and EMSA analysis showed reduced binding to three essential Sp1 elements. Inhibitor studies suggested that the repression of AS expression by TNF-alpha may be mediated, in part, via the NF-kappaB signaling pathway. These findings demonstrate that TNF-alpha coordinately downregulates eNOS and AS expression, resulting in a severely impaired citrulline-NO cycle. The downregulation of AS by TNF-alpha is an added insult to endothelial function because of its important role in NO production and in endothelial viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.