Ethical considerations constrain the in vivo study of human hemopoietic stem cells (HSC). To overcome this limitation, small animal models of human HSC engraftment have been used. We report the development and characterization of a new genetic stock of IL-2R common γ-chain deficient NOD/LtSz-scid (NOD-scid IL2Rγnull) mice and document their ability to support human mobilized blood HSC engraftment and multilineage differentiation. NOD-scid IL2Rγnull mice are deficient in mature lymphocytes and NK cells, survive beyond 16 mo of age, and even after sublethal irradiation resist lymphoma development. Engraftment of NOD-scid IL2Rγnull mice with human HSC generate 6-fold higher percentages of human CD45+ cells in host bone marrow than with similarly treated NOD-scid mice. These human cells include B cells, NK cells, myeloid cells, plasmacytoid dendritic cells, and HSC. Spleens from engrafted NOD-scid IL2Rγnull mice contain human Ig+ B cells and lower numbers of human CD3+ T cells. Coadministration of human Fc-IL7 fusion protein results in high percentages of human CD4+CD8+ thymocytes as well human CD4+CD8− and CD4−CD8+ peripheral blood and splenic T cells. De novo human T cell development in NOD-scid IL2Rγnull mice was validated by 1) high levels of TCR excision circles, 2) complex TCRβ repertoire diversity, and 3) proliferative responses to PHA and streptococcal superantigen, streptococcal pyrogenic exotoxin. Thus, NOD-scid IL2Rγnull mice engrafted with human mobilized blood stem cells provide a new in vivo long-lived model of robust multilineage human HSC engraftment.
Here we report that a new nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse line harboring a complete null mutation of the common cytokine receptor ␥ chain (NOD/SCID/interleukin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.