Activation of cyclic nucleotide dependent signaling pathways leads to relaxation of smooth muscle, alterations in the cytoskeleton of cultured cells, and increases in the phosphorylation of HSP20. To determine the effects of phosphorylated HSP20 on the actin cytoskeleton, phosphopeptide analogs of HSP20 were synthesized. These peptides contained 1) the amino acid sequence surrounding the phosphorylation site of HSP20, 2) a phosphoserine, and 3) a protein transduction domain. Treatment of Swiss 3T3 cells with phosphopeptide analogs of HSP20 led to loss of actin stress fibers and focal adhesion complexes as demonstrated by immunocytochemistry, interference reflection microscopy, and biochemical quantitation of globular-actin. Treatment with phosphopeptide analogs of HSP20 also led to dephosphorylation of the actin depolymerizing protein cofilin. Pull-down assays demonstrated that 14-3-3 proteins associated with phosphopeptide analogs of HSP20 (but not peptide analogs in which the serine was not phosphorylated). The binding of 14-3-3 protein to phosphopeptide analogs of HSP20 prevented the association of cofilin with 14-3-3. These data suggest that HSP20 may modulate actin cytoskeletal dynamics by competing with the actin depolymerizing protein cofilin for binding to the scaffolding protein 14-3-3. Interestingly, the entire protein was not needed for this effect, suggesting that the association is modulated by phosphopeptide motifs of HSP20. These data also suggest the possibility that cyclic nucleotide dependent relaxation of smooth muscle may be mediated by a thin filament (actin) regulatory process. Finally, these data suggest that protein transduction can be used as a tool to elucidate the specific function of peptide motifs of proteins.
In this study, a two-dimensional LC-MALDI-TOF/TOF method has been developed for analyzing protein complexes. In our hands, the method has proven to be an excellent strategy for the analysis of protein complexes isolated in pull-down experiments. This is in part because the preservation of the chromatographic separation on a MALDI target yields an "unlimited" amount of time to obtain MS/MS spectra, making it possible to probe more deeply into complex samples. A brief statistical analysis was performed on the data obtained from the LC-MALDI-TOF/TOF system in order to better understand peptide fragmentation patterns under high-energy collision conditions. These statistical analyses provided some insight into how to evaluate the quality and accuracy of the database search results derived from the TOF/TOF-based analysis. The potential of the method was demonstrated by the successful identification of all the known penicillin-binding proteins in E. coli isolated using a drug-based pull-down with ampicillin as the bait. The performance of the LC-MALDI-TOF/TOF system was compared with that of an equivalent 2D LC-ESI-MS/MS approach, in the analysis of a protein bait-based pull-down. Regardless of the number of peptides identified in the ESI versus MALDI approach, the two approaches were found to be complementary. When the data is merged at the peptide level, the combined result gives higher Mascot scores and an overall higher confidence in protein identification than with either approach alone.
The identification and validation of the targets of active compounds identified in cell-based assays is an important step in preclinical drug development. New analytical approaches that combine drug affinity pull-down assays with mass spectrometry (MS) could lead to the identification of new targets and druggable pathways. In this work, we investigate a drug-target system consisting of ampicillin- and penicillin-binding proteins (PBPs) to evaluate and compare different amino-reactive resins for the immobilization of the affinity compound and mass spectrometric methods to identify proteins from drug affinity pull-down assays. First, ampicillin was immobilized onto various amino-reactive resins, which were compared in the ampicillin-PBP model with respect to their nonspecific binding of proteins from an Escherichia coli membrane extract. Dynal M-270 magnetic beads were chosen to further study the system as a model for capturing and identifying the targets of ampicillin, PBPs that were specifically and covalently bound to the immobilized ampicillin. The PBPs were identified, after in situ digestion of proteins bound to ampicillin directly on the beads, by using either one-dimensional (1-D) or two-dimensional (2-D) liquid chromatography (LC) separation techniques followed by tandem mass spectrometry (MS/MS) analysis. Alternatively, an elution with N-lauroylsarcosine (sarcosyl) from the ampicillin beads followed by in situ digestion and 2-D LC-MS/MS analysis identified proteins potentially interacting noncovalently with the PBPs or the ampicillin. The in situ approach required only little time, resources, and sample for the analysis. The combination of drug affinity pull-down assays with in situ digestion and 2-D LC-MS/MS analysis is a useful tool in obtaining complex information about a primary drug target as well as its protein interactors.
The quantity and variable quality of data that can be generated from liquid chromatography (LC)/mass spectrometry (MS)-based proteomics analyses creates many challenges in interpreting the spectra in terms of the actual proteins in a complex sample. In spite of improvements in algorithms that match putative peptide sequences to MS/MS spectra, the assembly of these lists of possible or probable peptides into a 'correct' set of proteins is still problematic. We have observed a trend in a simple relationship, derived from standard database search outputs, which can be useful in assessing the quality of a MS/MS-based protein identification. Specifically, the ratio of the protein score and number of non-redundant peptides, or average peptide score (APS), can facilitate initial filtering of database search results in addition to providing a useful measure of confidence for the proteins identified. This parameter has been applied to results from the analysis of multi-protein complexes derived from pull-down experiments analyzed using a two-dimensional LC/MS/MS workflow. In particular, the complex list of protein identifications derived from a drug affinity pull-down with immobilized ampicillin and an E. coli lysate was greatly simplified by applying the APS as a filter, allowing for facile identification of the penicillin-binding proteins known to interact with ampicillin. Furthermore, an APS threshold can be used for any data sets derived from electrospray ionization (ESI)- or matrix-assisted laser desorption/ionization (MALDI)-MS/MS experiments and is also not specific to any database search program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.