Difficult-to-remove microplastic pollution poses serious risks to ecosystems and human health. Sewage treatment plants also cannot remove microplastics completely with filters or harsh chemical treatments. It is imperative to develop biotechnologies that aggregate microplastics into larger sizes for rapid removal from polluted waters. Using experimental evolution, we generated microplastic aggregators (MAGs) from the environmentally prevalent Pseudomonas aeruginosa, which are evolved to aggregate microplastics into sizable aggregates via biofilm formation. This is mediated by upregulation of a cyclic-di-GMP (c-di-GMP) secondary messenger signaling system found in most bacterial species. Comparative genomic analysis of MAGs revealed mutations in the yfiR gene, which is the repressor of tpbB, a c-di-GMP synthesizing diguanylate cyclase (DGC). Derepression of tpbB conferred MAGs with high intracellular c-di-GMP content and production of a CdrA biofilm matrix protein, resulting in higher biofilm formation and aggregation of microplastics with various sizes and materials. To release microplastics from the aggregates for downstream resource recovery, we employed protease (trypsin) to degrade CdrA and disrupt the biofilm matrix. As a proof-of-concept method, we demonstrated that a capture-then-release approach could mitigate microplastic pollution in seawater samples collected in the vicinity of a sewage outfall. Hence, our work provides insights into efficient biological removal of other micropollutants or biofilm-enabled catalysis of microparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.