A miniaturized, telemetric, photoplethysmograph (PPG) sensor for long-term, continuous monitoring is presented in this paper. The sensor, called a "ring sensor," is attached to a finger base for monitoring beat-to-beat pulsation, and the data is sent to a host computer via a radio-frequency transmitter. Two major design issues are addressed: one is to minimize motion artifact and the other is to minimize the consumption of battery power. An efficient double ring design is developed to lower the influence of external force, acceleration, and ambient light, and to hold the sensor gently and securely on the skin, so that the circulation at the finger may not be obstructed. Total power consumption is analyzed in relation to characteristics of individual components, sampling rate, and CPU clock speed. Optimal operating conditions are obtained for minimizing the power budget. A prototype ring sensor is designed and built based on the power budget analysis and the artifact-resistive attachment method. It is verified through experiments that the ring sensor is resistant to interfering forces and acceleration acting on the ring body. Benchmarking tests with FDA-approved PPG and electrocardiogram reveal that the ring sensor is comparable to those devices in detecting beat-to-beat pulsation despite disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.