The flow at low Reynolds number around rectangular cylinders of varying chord-tothickness ratios under transverse periodic forcing is studied numerically. Although of relatively low amplitude, the forcing locks the shedding from both the leading and trailing edges to the applied frequency. The base suction, and the lift and the drag on the cylinders are found to be complex functions of the forcing frequency. At low Reynolds numbers and without applied forcing, the flow is controlled by a global instability with the leading-and trailing-edge shedding locked; moreover, the reduced frequency of shedding varies in a stepwise manner with the chord-tothickness ratio. This global instability is still evident in the flows under external forcing examined in this paper. While previous researchers have conjectured that the trailing-edge shedding plays a dominant role in the preferred frequency selection in the natural shedding case, the important role of trailing-edge shedding when the flow is forced is confirmed in the present study. In particular, the individual contributions from leading-and trailing-edge vortices on the perturbation to the leading-edge shear layer are examined. In addition, it is shown that the base suction is maximum when the forcing frequency is close to the global instability frequency observed in unforced flows, thereby strengthening the argument that the unforced, forced, and duct resonant cases are strongly influenced by the same global instability. The variations of the lift, drag and formation length with chord-to-thickness ratio are quantified.
This work considers the momentum transport and mass transfer of O 2 in a novel aerial rotating disk bioreactor (RDB) for animal cell or tissue culture. Specifically, this design uses a rotating lid placed above the surface of the culture medium to provide a stirring mechanism, which has potential benefits of enhanced gas transfer, reducing possible contamination, and better access to the culture medium below. The aim of this study is to use CFD to characterize the flow field, shear stresses, and oxygen profiles at a range of Reynolds number that lies within the laminar flow regime. Ultimately, such data will aid the development of an aerial RDB for tumor progression. Numerical simulation is used whereby the two-phase flow, comprising air as the gaseous phase, and water as the aqueous phase, is obtained by solving the unsteady, axisymmetric, incompressible Navier Stokes equation. Having obtained an accurate flow field, a species transport equation is then used to predict the oxygen transfer from the gaseous phase to the aqueous phase. Results are presented for a rotation Reynolds number (Re) range that corresponds to the impeller speed range of 60 to 240 rpm. While the flow is primarily swirl-dominant, it is found that the secondary flow in the aqueous region consists of a single recirculation pattern. As the oxygen transfer in the aqueous phase is mainly driven by convection, there is a clear depletion of oxygen at the center of the recirculation region. Shear stress distributions along the bottom stationary wall indicate a shift in the peak towards the external cylinder wall with increasing Re.
Keywords: Bioreactor; computational fluid dynamics; oxygen transfer; tissue engineering. 121 Mod. Phys. Lett. B 2009.23:121-127. Downloaded from www.worldscientific.com by NEW YORK UNIVERSITY on 02/08/15. For personal use only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.