In present casting industries, product development paradigm is shifting from traditional trial-and-error to proof-of-concept based on CAE-enabled simulation. In the new production development paradigm, CAE simulation plays an important role because it models the entire casting process and reveals the dynamic behavior of the casting system in working conditions. In this research, Computer Aided Engineering (CAE) simulation was performed by using the simulation software (AnyCasting) in order to optimize casting design of an automobile part (Upper Oil Pan) which is well known and complicated to achieve a good casting layout. The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process, internal porosities caused by air entrapments were predicted and reduced remarkably by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were also predicted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.