Differences in brain activity of children with attention deficit hyperactivity disorder (ADHD) have been compared to normal healthy controls, suggesting neural correlates of cognitive/behavioral symptoms. Symptoms are improved with methylphenidate treatment but limited sources can be cited to show how brain activity in ADHD is altered after pharmacologic treatment. We investigated how long-term oral medication of methylphenidate affects the resting regional cerebral blood flow (rCBF) in ADHD children, using single photon emission computerized tomography (SPECT). rCBF was decreased in the orbitofrontal cortex and middle temporal gyrus in the right hemisphere whereas it was increased in the dorsomedial prefrontal and somatosensory area bilaterally in drug-naive ADHD children compared to control child subjects. After treatment with methylphenidate, the extent of hyperperfusion in the somatosensory area was reduced and significant reduction of rCBF was found in the right striatum for the first time. Methylphenidate treatment also resulted in rCBF increase in superior prefrontal and reduction in ventral higher visual areas bilaterally. The results indicated that improving ADHD symptom after methylphenidate is associated with normalization of abnormally reduced orbitofrontal activity and abnormally increased somatosensory cortical activity. These changes were accompanied with reduced striatum activity lower than that of normal controls. These changes might be associated with improving ADHD to control attention and motor response to irrelevant environmental stimuli after methylphenidate treatment.
Background: Neurobiologic studies have suggested that dysregulation of central noradrenergic systems may be involved in the pathophysiology of attention deficit hyperactivity disorder (ADHD), and it has been hypothesized that genetic changes in the norepinephrine pathways might contribute to dysfunction of the prefrontal cortex circuits in ADHD. We previously reported decreased cerebral blood flow in the right lateral prefrontal cortex and both orbitofrontal cortices in children with ADHD. Genetic investigations have shown that the α-2A-adrenergic receptor gene (ADRA2A) is associated with ADHD. Our aim was to examine whether the presence of a risk allele of the ADRA2A MspI polymorphism is associated with differences in regional cerebral blood flow in boys with ADHD. Methods: We recruited 21 Korean boys with ADHD (mean age 9.9, standard deviation [SD] 2.7 yr) and 11 age-and sex-matched controls (mean age 10.6 [SD 2.1] yr). Each participant underwent technetium-99m-hexamethylpropylene amine oxime ( 99m Tc-HMPAO) single-photon emission computed tomography. We performed image analyses with voxel-wise t statistics using SPM2. Results: We found regional hypoperfusion in the prefrontal regions, including the right orbitofrontal and right medial gyri, and the bilateral putamen and cerebellum in boys with ADHD relative to controls (p < 0.0005, uncorrected for multiple comparisons). Boys with ADHD who carried the C allele (n = 13) at the ADRA2A MspI polymorphism had reduced perfusion in the bilateral orbitofrontal regions compared with those without the C allele (n = 8) (p < 0.0005, uncorrected for multiple comparisons). Limitations: This study was limited by the small sample size, and we did not obtain genetic data from the controls. Conclusion: Our findings suggest that regional differences in cerebral perfusion in the orbitofrontal cortex represent an intermediate neuroimaging phenotype associated with the ADRA2A MspI polymorphism; these data support the validity of the noradrenergic hypothesis regarding the pathophysiology of ADHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.