This paper presents a new numerical method to compute control solutions achieving minimum-time state transfer for a linear dynamical system with bounded control input. The method can be used to generate bang-bang control input solutions in cases that would pose difficulties for methods based on solving directly for input switch-times. For the considered problem, the optimum control input is uniquely determined by the initial value of the co-state vector. The proposed method involves an iterative computation of the initial co-state vector based on the geometry of the reachable set. True optimality of the solution is implicit from Pontryagin's minimum principle, while the convexity property of the reachable set ensures that the solution converges to match the required boundary conditions. Example simulation results involving motion control of flexible structures are given to demonstrate the usefulness of the algorithm in solving practical control problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.