TLRs (Toll-like receptors) provide a mechanism for host defence immune responses. Activated TLRs lead to the recruitment of adaptor proteins to their cytosolic tails, which in turn promote the activation of IRAKs (interleukin-1 receptor-associated kinases). IRAKs act upon their transcription factor targets to influence the expression of genes involved in the immune response. Tollip (Toll-interacting protein) modulates IRAK function in the TLR signalling pathway. Tollip is multimodular, with a conserved C2 domain of unknown function. We found that the Tollip C2 domain preferentially interacts with phosphoinositides, most notably with PtdIns3P (phosphatidylinositol 3-phosphate) and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate), in a Ca2+-independent manner. However, NMR analysis demonstrates that the Tollip C2 domain binds Ca2+, which may be required to target the membrane interface. NMR and lipid-protein overlay analyses suggest that PtdIns3P and PtdIns(4,5)P2 share interacting residues in the protein. Kinetic studies reveal that the C2 domain reversibly binds PtdIns3P and PtdIns(4,5)P2, with affinity values in the low micromolar range. Mutational analysis identifies key PtdIns3P- and PtdIns(4,5)P2-binding conserved basic residues in the protein. Our findings suggest that basic residues of the C2 domain mediate membrane targeting of Tollip by interaction with phosphoinositides, which contribute to the observed partition of the protein in different subcellular compartments.
The planar cell polarity (PCP) pathway is required for fetal tissue morphogenesis as well as for maintenance of adult tissues in animals as diverse as fruit flies and mice. One of the key members of this pathway is Prickle (Pk), a protein that regulates cell movement through its association with the Dishevelled (Dsh) protein. Pk presents three LIM domains and a PET domain of unknown structure and function. Both the PET and LIM domains control membrane targeting of Dsh, which is necessary for Dsh function in the PCP pathway. Here, we show that the PET domain is monomeric and presents a nonglobular conformation with some properties of intrinsically disordered proteins. The PET domain adopts a helical conformation in the presence of 2,2,2-trifluoroethanol (TFE), a solvent known to stabilize hydrogen bonds within the polypeptide backbone, as analyzed by circular dichroism (CD) and NMR spectroscopy. Furthermore, we found that the conserved and single tryptophan residue in PET, Trp 536, moves to a more hydrophobic environment when accompanied with membrane penetration and that the protein becomes more helical in the presence of lipid micelles. The presence of LIM domains, downstream of PET, increases protein folding, thermostability, and tolerance to limited proteolysis. In addition, pull-down and tryptophan fluorescence analyses suggest that the LIM domains physically interact to regulate membrane penetration of the PET domain. The findings reported here favor a model where the PET domain is engaged in Pk membrane insertion, whereas the LIM domains modulate this function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.