Accurate analysis of sonic boom pressure signature using Computational Fluid Dynamics (CFD) is still a challenging task. In this paper, four benchmark cases including two axisymmetric body, a simple delta wing body and a full configuration includes fuselage, wing, tail, flow-through nacelles, and blade wing were computed with a Reynold-averaged Navier-Stokes (RANS) based flow solver to predicted the near field sonic boom signature. The computed results from CFD agree well with the measured data in wind tunnel experiment. The effects of geometry equivalent radius, grid size, turbulence model and spatial discretization schemes are investigated and discussed. I.
Sonic boom reduction has been an urgent need to develop the future supersonic transport, because of the heavy damages of the noise pollution. This paper provides an active control method for the supersonic aircraft to reduce the sonic boom, wherein a suction slot near the leading edge and an injection slot near the trailing edge on the airfoil suction surface are opened, and the mass flow sucked in near the leading edge is equal to the mass flow injected near the trailing edge. The diamond and 566 airfoils are adopted as the baseline airfoil to verify the capability of the active control method, and the effects of the suction and injection location, the mass flow rate and the attack angle on the ground boom signature, the maximum overpressure, the drag coefficients and the ratio of lift to drag are studied in detail. The results show that the proposed active control method can significantly reduce the sonic boom, and the reduction of the sonic boom intensity is more sensitive to the injection near the trailing edge than the suction near the leading edge. Applying this active control method to the diamond (NACA0008) airfoil, when the mass flow rate is 6.5 kg/s(7.5 kg/s), the value of maximum positive overpressure is decreased by 12.87%(12.85%), the value of maximum negative overpressure is decreased by 33.83%(56.77%) and the drag coefficient is decreased by 9.50%(10.96%). It can be seen that the method proposed in this paper has great benefits in the reduction of sonic boom and provides a useful reference for designing a new generation of lower sonic boom supersonic aircraft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.