Abstract:This paper provides an energy consumption model and explains how the operating conditions and structural parameters of a crushing chamber affect energy consumption. Energy consumption is closely related to compressive pressure and displacement. The relationship between pressure, displacement and structural parameters is discussed. The influence of operating parameters on pressure and displacement based on the law of motion of material is examined. Energy consumption can be obtained by the product of pressure and displacement. In consideration of the pressure on the liner surface, which varies according to both height and circumference, an infinitesimal method was used to solve the issue of energy consumption. We validated the predicted energy consumption during breakage with experimental data from a PYGB1821 cone crusher which was consistent with the measured results. Finally, we provide an explanation of the influence of operating parameters and structural parameters on compressive pressure and displacement as well as energy consumption.
This paper proposes a novel 6-DOF robotic crusher that combines the performance characteristics of the cone crusher and parallel robot, such as interparticle breakage and high flexibility. Kinematics and dynamics are derived from the no-load and crushing parts in order to clearly describe the whole crushing process. For the no-load case, the kinematic and dynamic equations are established by using analytical geometry and Lagrange equation. Analytical geometry is mainly used to solve the inverse kinematics and then establish the velocity relationship between generalized coordinates and actuators. Lagrange equation which takes into account the weight of the mantle and actuators is used to solve driving forces of actuators. For the crushing case, crushing pressure is related to the compression ratio and particle size distribution, but the selection and breakage functions should be established first. Because the trajectory model of the mantle is difficult to be established by using analytical method, it can be obtained by an eccentric simulation. The results of input velocities and driving forces of actuators are distinctive due to the eccentric angle and selection of the initial position. Finally, the proposed approach is verified by a numerical example and then the energy consumption is calculated.
A novel methodology for the fault diagnosis of rolling bearing in strong background noise, based on sensitive intrinsic mode functions (IMFs) selection of ensemble empirical mode decomposition (EEMD) and adaptive stochastic resonance, is proposed. The original vibration signal is decomposed into a group of IMFs and a residual trend item by EEMD. Constructing weighted kurtosis index difference spectrum (WKIDS) to adaptively select sensitive IMFs, this method can overcome the shortcomings of the existing methods such as subjective choice or need to determine a threshold using the correlation coefficient. To further reduce noise and enhance weak characteristics, the adaptive stochastic resonance is employed to amplify each sensitive IMF. Then, the ensemble average is used to eliminate the stochastic noise. The simulation and rolling element bearing experiment with an inner fault are performed to validate the proposed method. The results show that the proposed method not only overcomes the difficulty of choosing sensitive IMFs, but also, combined with adaptive stochastic resonance, can better enhance the weak fault characteristics. Moreover, the proposed method is better than EEMD and adaptive stochastic resonance of each sensitive IMF, demonstrating the feasibility of the proposed method in highly noisy environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.