Audio scene classification, the problem of predicting class labels of audio scenes, has drawn lots of attention during the last several years. However, it remains challenging and falls short of accuracy and efficiency. Recently, Convolutional Neural Network (CNN)-based methods have achieved better performance with comparison to the traditional methods. Nevertheless, conventional single channel CNN may fail to consider the fact that additional cues may be embedded in the multi-channel recordings. In this paper, we explore the use of Multi-channel CNN for the classification task, which aims to extract features from different channels in an end-to-end manner. We conduct the evaluation compared with the conventional CNN and traditional Gaussian Mixture Model-based methods. Moreover, to improve the classification accuracy further, this paper explores the using of mixup method. In brief, mixup trains the neural network on linear combinations of pairs of the representation of audio scene examples and their labels. By employing the mixup approach for data augmentation, the novel model can provide higher prediction accuracy and robustness in contrast with previous models, while the generalization error can also be reduced on the evaluation data.
Deep learning has dramatically improved the performance of sounds recognition. However, learning acoustic models directly from the raw waveform is still challenging. Current waveform-based models generally use time-domain convolutional layers to extract features. The features extracted by single size filters are insufficient for building discriminative representation of audios. In this paper, we propose multi-scale convolution operation, which can get better audio representation by improving the frequency resolution and learning filters cross all frequency area. For leveraging the waveform-based features and spectrogram-based features in a single model, we introduce twophase method to fuse the different features. Finally, we propose a novel end-to-end network called WaveMsNet based on the multi-scale convolution operation and two-phase method. On the environmental sounds classification datasets ESC-10 and ESC-50, the classification accuracies of our WaveMsNet achieve 93.75% and 79.10% respectively, which improve significantly from the previous methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.