MicroRNAs have been reported to be implicated in myocardial ischemia/reperfusion (I/R) injury. The purpose of this study was to investigate the effect of miR-183-5p on I/R injury. Overexpression of miR-183-5p by agomiR transfection alleviated cardiac dysfunction and significantly reduced the infarct size in rats with myocardial I/R. MiR-183-5p also alleviated myocardial apoptosis with reduced apoptotic cells and lower levels of apoptosis associated proteins. in vitro experiments were conducted on rat H9c2 cells treated with anoxia/reoxygenation (A/R).Annexin V/propidium iodide (PI) staining and flow cytometry reported that the ratio of apoptotic cells decreased by miR-183-5p transfection before A/R treatment.Moreover, according to binding sequence prediction and Dual luciferase reporter assay, we explored that voltage-dependent anion channel 1 (VDAC1), which aggravates myocardial injury and apoptosis reported in our former research, was a target of miR-183-5p. In conclusion, miR-183-5p can efficiently attenuate I/R injury and miR-183-5p may exert its effect through repressing VDAC1 expression.
<b><i>Introduction:</i></b> Isoflurane (ISO) may cause neuronal apoptosis and synaptic disorder during development, and damage long-term learning and memory function. This observation aimed to study the function of H19 in vitro and in vivo tests and the further mechanism was identified. <b><i>Methods:</i></b> ISO cell models and rat models were established and reactive oxygen species (ROS) identified. The viability and apoptosis of HT22 cells were detected by the MTT and flow cytometer. Morris water maze test was conducted to analyze the neurotoxicity of ISO on spatial learning and memory ability. Quantitative PCR was the method to verify the expression of H19. The concentration of inflammatory indicators was identified by enzyme-linked immunosorbent assay. <b><i>Results:</i></b> 1.5% and 2% ISO led to the neurotoxicity of HT22 cells and increased expression of H19. Silenced H19 meliorated these adverse impacts of ISO. Interference of H19 exerted neuroprotective roles by repressing modified neurological severity score, inhibiting escape latency, elevating distance and time of target area, and controlling ROS and inflammation. MiR-17-5p might be a promising competing endogenous RNA of H19. The expression of miR-17-5p was reduced in the ISO group and reversed by the absence of H19. <b><i>Conclusion:</i></b> Our results of in vitro and in vivo assay indicated that the absence of HT22 is a neuroprotective regulator of cognition and inflammation by accumulating miR-17-5p.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.