The human skin microbiome plays important roles in skin health and disease. However, bacterial population structure and diversity at the strain level is poorly understood. We compared the skin microbiome at the strain level and genome level of Propionibacterium acnes, a dominant skin commensal, between 49 acne patients and 52 healthy individuals by sampling the pilosebaceous units on their noses. Metagenomic analysis demonstrated that while the relative abundances of P. acnes were similar, the strain population structures were significantly different in the two cohorts. Certain strains were highly associated with acne and other strains were enriched in healthy skin. By sequencing 66 previously unreported P. acnes strains and comparing 71 P. acnes genomes, we identified potential genetic determinants of various P. acnes strains in association with acne or health. Our analysis suggests that acquired DNA sequences and bacterial immune elements may play roles in determining virulence properties of P. acnes strains and some could be future targets for therapeutic interventions. This study demonstrates a previously unreported paradigm of commensal strain populations that could explain the pathogenesis of human diseases. It underscores the importance of strain level analysis of the human microbiome to define the role of commensals in health and disease.
Propionibacterium acnes constitutes a major part of the skin microbiome and contributes to human health. However, it has also been implicated as a pathogenic factor in several diseases, including acne, one of the most common skin diseases. Its pathogenic role, however, remains elusive. To better understand the genetic landscape and diversity of the organism and its role in human health and disease, we performed a comparative genome analysis of 82 P. acnes strains, 69 of which were sequenced by our group. This collection covers all known P. acnes lineages, including types IA, IB, II, and III. Our analysis demonstrated that although the P. acnes pan-genome is open, it is relatively small and expands slowly. The core regions, shared by all the sequenced genomes, accounted for 88% of the average genome. Comparative genome analysis showed that within each lineage, the strains isolated from the same individuals were more closely related than the ones isolated from different individuals, suggesting that clonal expansions occurred within each individual microbiome. We also identified the genetic elements specific to each lineage. Differences in harboring these elements may explain the phenotypic and functional differences of P. acnes in functioning as a commensal in healthy skin and as a pathogen in diseases. Our findings of the differences among P. acnes strains at the genome level underscore the importance of identifying the human microbiome variations at the strain level in understanding its association with diseases and provide insight into novel and personalized therapeutic approaches for P. acnes-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.