Capturing hand motions for hand function evaluations is essential in the medical field. Various data gloves have been developed for rehabilitation and manual dexterity assessments. This study proposed a modular data glove with 9-axis inertial measurement units (IMUs) to obtain static and dynamic parameters during hand function evaluation. A sensor fusion algorithm is used to calculate the range of motion of joints. The data glove is designed to have low cost, easy wearability, and high reliability. Owing to the modular design, the IMU board is independent and extensible and can be used with various microcontrollers to realize more medical applications. This design greatly enhances the stability and maintainability of the glove.
In the clinic, the wheezing sound is usually considered as an indicator symptom to reflect the degree of airway obstruction. The auscultation approach is the most common way to diagnose wheezing sounds, but it subjectively depends on the experience of the physician. Several previous studies attempted to extract the features of breathing sounds to detect wheezing sounds automatically. However, there is still a lack of suitable monitoring systems for real-time wheeze detection in daily life. In this study, a wearable and wireless breathing sound monitoring system for real-time wheeze detection was proposed. Moreover, a breathing sounds analysis algorithm was designed to continuously extract and analyze the features of breathing sounds to provide the objectively quantitative information of breathing sounds to professional physicians. Here, normalized spectral integration (NSI) was also designed and applied in wheeze detection. The proposed algorithm required only short-term data of breathing sounds and lower computational complexity to perform real-time wheeze detection, and is suitable to be implemented in a commercial portable device, which contains relatively low computing power and memory. From the experimental results, the proposed system could provide good performance on wheeze detection exactly and might be a useful assisting tool for analysis of breathing sounds in clinical diagnosis.
This study proposes a modular data glove system to accurately and reliably capture hand kinematics. This data glove system's modular design enhances its flexibility. It can provide the hand's angular velocities, accelerations, and joint angles to physicians for adjusting rehabilitation treatments. Three validations-raw data verification, static angle verification, and dynamic angle verification-were conducted to verify the reliability and accuracy of the data glove. Furthermore, to ensure the wearability of the data glove, 15 healthy participants and 15 participants with stroke were recruited to test the data glove and fill out a questionnaire. The errors of the finger ROMs obtained from the fusion algorithm were less than 2°, proving that the fusion algorithm can measure the wearer's range of motion accurately. The result of the questionnaire shows the participants' high satisfaction with the data glove. Moreover, a comparison between the proposed data glove and related research shows that the proposed data glove is superior to other data glove systems.
Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.