We will present the latest developments in CutLang, the runtime interpreter of a recently-developed analysis description language (ADL) for collider data analysis. ADL is a domain-specific, declarative language that describes the contents of an analysis in a standard and unambiguous way, independent of any computing framework. In ADL, analyses are written in human-readable plain text files, separating object, variable and event selection definitions in blocks, with a syntax that includes mathematical and logical operations, comparison and optimisation operators, reducers, four-vector algebra and commonly used functions. Adopting ADLs would bring numerous benefits to the LHC experimental and phenomenological communities, ranging from analysis preservation beyond the lifetimes of experiments or analysis software to facilitating the abstraction, design, visualization, validation, combination, reproduction, interpretation and overall communication of the analysis contents. Since their initial release, ADL and CutLang have been used for implementing and running numerous LHC analyses. In this process, the original syntax from CutLang v1 has been modified for better ADL compatibility, and the interpreter has been adapted to work with that syntax, resulting in the current release v2. Furthermore, CutLang has been enhanced to handle object combinatorics, to include tables and weights, to save events at any analysis stage, to benefit from multi-core/multi-CPU hardware among other improvements. In this contribution, these and other enhancements are discussed in details. In addition, real life examples from LHC analyses are presented together with a user manual.
<p>Temperature is the most important factor influencing grapevine phenology and yield. Various indices have been developed that deal with the temperature sums that grapevines are exposed to during growth and maturation. With the help of these indices, predictions are made about whether the grapes will grow in a certain region and the quality of the grapevines. In this study, the future impacts of climate change on viticultural conditions in Turkey were projected by using Huglin index (HI), Winkler index (WI), and cool night index (CI). Under the RCP8.5 scenario, HI, WI, and CI indices for the future period of 2022&#8211;2050 were calculated for Turkey at 10 km spatial resolution with the RegCM4.4 model and compared with the 1972&#8211;2000 reference period. As a result of the study, a substantial increase in CI, HI, and WI and at least one level of categorical change were observed in the climatic conditions of the next 30 years in Turkey. These categorical shifts in CI, HI, and WI indicate that there may be changes in the geographical pattern of grapevine species grown in Turkey as well as the aroma and quality.</p><p><strong>Acknowledgement:</strong> This research has been supported by Bo&#287;azi&#231;i University Research Fund Grant Number 17601</p><p>&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.