An alkoxide-promoted method for the synthesis of ketones from readily available esters and benzyldiboronates is described. The synthetic method is compatible with a host of sterically differentiated alkyl groups, alkenes, acidic protons α to carbonyl groups, tertiary amides and aryl rings having common organic functional groups. With esters bearing α-stereocenters, high enantiomeric excess was maintained during ketone formation, establishing minimal competing racemization by deprotonation. Monitoring the reaction between benzyldiboronate and LiO t Bu in THF at 23 °C allowed for the identification of products arising from deborylation to form an αboryl carbanion, deprotonation, and alkoxide addition to form an "-ate" complex. Addition of 4trifluoromethylbenzoate to this mixture established the x-boryl carbanion as the intermediate responsible for C-C bond formation and ultimately ketone synthesis. Elucidation of the role of this intermediate leveraged additional bond-forming chemistry and enabled the one-pot synthesis of ketones with α-halogen atoms and quaternary centers with four-different carbon substituents.
A series of air-stable boron complexes 1-5 were prepared by using N-aryl iminopyrrolide ligands. Designed as minimalist structural mimics of the privileged BODIPY motif, these new BOIMPY (BOron complexes of IMinoPYrrolide ligands) fluorophores feature low molecular symmetry that promotes emission from CT-type excited states with large Stokes shifts and little self-quenching. Through comparative studies on the homologous set of compounds 1-4, we have confirmed that a delicate interplay between conformational twisting and donor-acceptor interaction dictates the mechanism of de-excitation, which responds sensitively to solvent polarity as well as protonation states. Over a wide visible spectral range, the structure-dependent light-emitting properties of BOIMPY molecules are well manifested, even in the solid-state. In order to exploit the environment-sensitive nature of CT-type emission, the BOIMPY motif was elaborated further into a bioprobe molecule 5. Live-cell fluorescence imaging studies have established that 5 is localized exclusively at lipid droplets to produce well-resolved staining patterns without affecting cell viability. These findings promise future elaboration of BOIMPY-based functional molecules for applications in biological imaging, chemical sensing, and molecular switching.
Cobalt complexes supported by a tetramethylated PNP pincer ligand (Me 4 iPr PNP = 2,6-( i Pr 2 PCMe 2 ) 2 (C 5 H 3 N)) have been synthesized and structurally characterized. Examples include cobalt(I)−choride, −methyl, −aryl, and −benzofuranyl derivatives. The performance of these compounds was evaluated in the catalytic borylation of fluorinated arenes using B 2 Pin 2 as the boron source. While P−C bond cleavage, a known deactivation pathway in [(PNP)Co]-catalyzed borylation, was suppressed, the overall activity and selectivity of the borylation of fluoroarenes was reduced as compared to the previously reported [(PNP)Co] catalyst lacking isopropylene spacers. Stoichiometric reactions support an increased barrier for oxidative addition to cobalt(I), a result of the increased steric profile and decreased conformational flexibility of the pincer resulting from methylation distal to the active site. With a more activated substrate such as benzofuran, catalytic borylation with cobalt(I) precatalysts and HBPin was observed. Monitoring the progress of the reaction by NMR spectroscopy revealed the presence of cobalt(III) intermediates during the course of the borylation, supporting a cobalt(I)-(III) redox cycle.Article pubs.acs.org/Organometallics
Cell-based assays can monitor virus infection at a single-cell level with high sensitivity and cost-efficiency. For this purpose, it is crucial to develop molecular probes that respond selectively to physiological changes in live cells. We report stimuli-responsive light-emitters built on a T-shaped benzimidazole platform, and consecutive borylation reactions to produce a library of homologs displaying systematic changes in fluorescence quantum yield and environmental sensitivity. We find that certain fluorophores localize selectively at the endoplasmic reticulum, and interact with proteins involved in the stress signaling pathways. Notably, the mono-borylated compound responds selectively to the stress conditions by enhancing fluorescence, and detects avian influenza virus infection at the single-cell level. Our findings demonstrate the unprecedented practical utility of the stress-responsive molecular probes to differentiate cellular states for early diagnosis.
Cobalt complexes containing the 2,6-diaminopyridine-substituted PNP pincer (iPrPNMeNP = 2,6-(iPr2PNMe)2(C5H3N)) were synthesized. A combination of solid-state structures and investigation of the cobalt(I)/(II) redox potentials established a relatively rigid and electron-donating chelating ligand as compared to iPrPNP (iPrPNP = 2,6-(iPr2PCH2)2(C5H3N)). Based on a buried volume analysis, the two pincer ligands are sterically indistinguishable. Nearly planar, diamagnetic, four-coordinate complexes were observed independent of the field strength (chloride, alkyl, aryl) of the fourth ligand completing the coordination sphere of the metal. Computational studies supported a higher barrier for C–H oxidative addition, largely a result of the increased rigidity of the pincer. The increased oxidative addition barrier resulted in stabilization of (iPrPNMeNP)Co(I) complexes, enabling the characterization of the cobalt boryl and the cobalt hydride dimer by X-ray crystallography. Moreover, (iPrPNMeNP)CoMe served as an efficient precatalyst for alkene hydroboration likely because of the reduced propensity to undergo oxidative addition, demonstrating that reactivity and catalytic performance can be tuned by rigidity of pincer ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.